Inclusive and exclusive observables from dipoles in high energy collisions

  • Christoffer Flensburg
  • Gösta Gustafson
  • Leif Lönnblad
Open Access
Article

Abstract

We present a new model for simulating exclusive final states in minimum-bias collisions between hadrons.

In a series of papers we have developed a Monte Carlo model based on Mueller’s dipole picture of BFKL-evolution, supplemented with non-leading corrections, which has shown to be very successful in describing inclusive and semi-inclusive observables in hadron collisions. In this paper we present a further extension of this model to also describe exclusive final states. This is a highly non-trivial extension, and we have encountered many details that influence the description, and for which no guidance from perturbative QCD could be found. Hence we have had to make many choices based on semi-classical and phenomenological arguments.

The end result is a new event generator called dipsy which can be used to simulate complete minimum-bias non-diffractive hadronic collision events. Although the description ofdata from the Tevatron and LHC is not quite as good as for Pythia 8, the most advanced of the general purpose event generator programs for these processes, our results are clearly competitive, and can be expected to improve with careful tuning. In addition, as our model is very different from conventional multiple scattering scenaria, the dipsy program can be used to gain deeper insight in the soft and semi-hard processes involved both in hadronic and heavy ion collisions.

Keywords

QCD Phenomenology Phenomenological Models 

References

  1. [1]
    E.A. Kuraev, L.N. Lipatov and V.S. Fadin, The Pomeranchuk singularity in nonabelian gauge theories, Sov. Phys. JETP 45 (1977) 199 [SPIRES].ADSMathSciNetGoogle Scholar
  2. [2]
    I.I. Balitsky and L.N. Lipatov, The Pomeranchuk singularity in quantum chromodynamics, Sov. J. Nucl. Phys. 28 (1978) 822 [SPIRES].Google Scholar
  3. [3]
    E. Avsar, G. Gustafson and L. Lönnblad, Energy conservation and saturation in small-x evolution, JHEP 07 (2005) 062 [hep-ph/0503181] [SPIRES].CrossRefADSGoogle Scholar
  4. [4]
    E. Avsar, G. Gustafson and L. Lönnblad, Small-x dipole evolution beyond the large-N c limit, JHEP 01 (2007) 012 [hep-ph/0610157] [SPIRES].ADSGoogle Scholar
  5. [5]
    E. Avsar, G. Gustafson and L. Lönnblad, Diifractive excitation in DIS and pp collisions, JHEP 12 (2007) 012 [arXiv:0709.1368] [SPIRES].ADSGoogle Scholar
  6. [6]
    C. Flensburg, G. Gustafson and L. Lönnblad, Elastic and quasi-elastic pp and γ p scattering in the dipole model, Eur. Phys. J. C 60 (2009) 233 [arXiv:0807.0325] [SPIRES].CrossRefADSGoogle Scholar
  7. [7]
    C. Flensburg and G. Gustafson, Fluctuations, saturation and diffractive excitation in high energy collisions, JHEP 10 (2010) 014 [arXiv:1004.5502] [SPIRES].CrossRefADSGoogle Scholar
  8. [8]
    A.H. Mueller, Soft gluons in the infinite momentum wave function and the BFKL Pomeron, Nucl. Phys. B 415 (1994) 373 [SPIRES].CrossRefADSGoogle Scholar
  9. [9]
    A.H. Mueller and B. Patel, Single and double BFKL Pomeron exchange and a dipole picture of high-energy hard processes, Nucl. Phys. B 425 (1994) 471 [hep-ph/9403256] [SPIRES].CrossRefADSGoogle Scholar
  10. [10]
    A.H. Mueller, Unitarity and the BFKL pomeron, Nucl. Phys. B 437 (1995) 107 [hep-ph/9408245] [SPIRES].CrossRefADSGoogle Scholar
  11. [11]
    G.P. Salam, A resummation of large sub-leading corrections at small x, JHEP 07 (1998) 019 [hep-ph/9806482] [SPIRES].CrossRefADSGoogle Scholar
  12. [12]
    E. Iancu, A. Leonidov and L. McLerran, The colour glass condensate: An introduction, hep-ph/0202270 [SPIRES].
  13. [13]
    E. Iancu and R. Venugopalan, The color glass condensate and high energy scattering in QCD, hep-ph/0303204 [SPIRES].
  14. [14]
    F. Gelis, E. Iancu, J. Jalilian-Marian and R. Venugopalan, The color glass condensate, Ann. Rev. Nucl. Part. Sci. 60 (2010) 463 [arXiv:1002.0333] [SPIRES].CrossRefADSGoogle Scholar
  15. [15]
    E. Iancu, A. Leonidov and L.D. McLerran, Nonlinear gluon evolution in the color glass condensate. I, Nucl. Phys. A 692 (2001) 583 [hep-ph/0011241] [SPIRES].ADSGoogle Scholar
  16. [16]
    J. Jalilian-Marian, A. Kovner, A. Leonidov and H. Weigert, The BFKL equation from the Wilson renormalization group, Nucl. Phys. B 504 (1997) 415 [hep-ph/9701284] [SPIRES].CrossRefADSGoogle Scholar
  17. [17]
    I. Balitsky, Operator expansion for diffractive high-energy scattering, hep-ph/9706411 [SPIRES].
  18. [18]
    Y.V. Kovchegov, Unitarization of the BFKL Pomeron on a nucleus, Phys. Rev. D 61 (2000) 074018 [hep-ph/9905214] [SPIRES].ADSGoogle Scholar
  19. [19]
    S. Catani, F. Fiorani and G. Marchesini, Small x behavior of initial state radiation in perturbative QCD, Nucl. Phys. B 336 (1990) 18 [SPIRES].CrossRefADSGoogle Scholar
  20. [20]
    M. Ciafaloni, Coherence effects in initial jets at small Q 2 /s, Nucl. Phys. B 296 (1988) 49 [SPIRES].CrossRefADSGoogle Scholar
  21. [21]
    B. Andersson, G. Gustafson and J. Samuelsson, The Linked dipole chain model for DIS, Nucl. Phys. B 467 (1996) 443 [SPIRES].CrossRefADSGoogle Scholar
  22. [22]
    G.P. Salam, Soft emissions and the equivalence of BFKL and CCFM final states, JHEP 03 (1999) 009 [hep-ph/9902324] [SPIRES].CrossRefADSGoogle Scholar
  23. [23]
    M.L. Good and W.D. Walker, Diffraction disssociation of beam particles, Phys. Rev. 120 (1960) 1857 [SPIRES].CrossRefADSGoogle Scholar
  24. [24]
    G.P. Salam, An introduction to leading and next-to-leading BFKL, Acta Phys. Polon. B 30 (1999) 3679 [hep-ph/9910492] [SPIRES].ADSGoogle Scholar
  25. [25]
    A.H. Mueller and G.P. Salam, Large multiplicity fluctuations and saturation effects in onium collisions, Nucl. Phys. B 475 (1996) 293 [hep-ph/9605302] [SPIRES].CrossRefADSGoogle Scholar
  26. [26]
    J. Kwiecinski, A.D. Martin and P.J. Sutton, Constraints on gluon evolution at small x, Z. Phys. C 71 (1996) 585 [hep-ph/9602320] [SPIRES].ADSGoogle Scholar
  27. [27]
    I. Balitsky and G.A. Chirilli, NLO evolution of color dipole, Acta Phys. Polon. B 39 (2008) 2561 [SPIRES].ADSGoogle Scholar
  28. [28]
    M. Ciafaloni and D. Colferai, The BFKL equation at next-to-leading level and beyond, Phys. Lett. B 452 (1999) 372 [hep-ph/9812366] [SPIRES].ADSGoogle Scholar
  29. [29]
    M. Ciafaloni, D. Colferai and G.P. Salam, A collinear model for small-x physics, JHEP 10 (1999) 017 [hep-ph/9907409] [SPIRES].CrossRefADSGoogle Scholar
  30. [30]
    J.R. Forshaw, D.A. Ross and A. SabioVera, Rapidity veto effects in the NLO BFKL equation, Phys. Lett. B 455 (1999) 273 [hep-ph/9903390] [SPIRES].ADSGoogle Scholar
  31. [31]
    E. Avsar, On the high energy behaviour of the total cross section in the QCD dipole model, JHEP 04 (2008) 033 [arXiv:0803.0446] [SPIRES].CrossRefADSGoogle Scholar
  32. [32]
    V.N. Gribov and L.N. Lipatov, Deep inelastic ep scattering in perturbation theory, Sov. J. Nucl. Phys. 15 (1972) 438 [SPIRES].Google Scholar
  33. [33]
    Y.L. Dokshitzer, Calculation of the structure functions for deep inelastic scattering and e + e annihilation by perturbation theory in quantum chromodynamics, Sov. Phys. JETP 46 (1977) 641 [SPIRES].ADSGoogle Scholar
  34. [34]
    G. Altarelli and G. Parisi, Asymptotic freedom in parton language, Nucl. Phys. B 126 (1977) 298 [SPIRES].CrossRefADSGoogle Scholar
  35. [35]
    H. Kharraziha and L. Lönnblad, The linked dipole chain Monte Carlo, JHEP 03 (1998) 006 [hep-ph/9709424] [SPIRES].CrossRefADSGoogle Scholar
  36. [36]
    H. Kharraziha and L. Lönnblad, LDCMC version 1.0 program and manual, Comput. Phys. Commun. 123 (1999) 153.CrossRefMATHADSGoogle Scholar
  37. [37]
    G. Gustafson, Dual description of a confined color field, Phys. Lett. B 175 (1986) 453 [SPIRES].ADSGoogle Scholar
  38. [38]
    G. Gustafson and U. Pettersson, Dipole formulation of QCD cascades, Nucl. Phys. B 306 (1988) 746 [SPIRES].CrossRefADSGoogle Scholar
  39. [39]
    L. Lönnblad, ARIADNE version 4: a program for simulation of QCD cascades implementing the color dipole model, Comput. Phys. Commun. 71 (1992) 15 [SPIRES].CrossRefADSGoogle Scholar
  40. [40]
    B. Andersson, G. Gustafson and B. Söderberg, A general model for jet fragmentation, Z. Phys. C 20 (1983) 317 [SPIRES].ADSGoogle Scholar
  41. [41]
    B. Andersson, G. Gustafson, G. Ingelman and T. Sjöstrand, Parton fragmentation and string dynamics, Phys. Rept. 97 (1983) 31 [SPIRES].CrossRefADSGoogle Scholar
  42. [42]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, A brief introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852 [arXiv:0710.3820] [SPIRES].CrossRefMATHADSGoogle Scholar
  43. [43]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [SPIRES].CrossRefADSGoogle Scholar
  44. [44]
    UA4 collaboration, D. Bernard, 1 et al., Large t elastic scattering at the CERN SPS collider at \( \sqrt {s} = 630 \) GeV, Phys. Lett. B 171 (1986) 142 [SPIRES].ADSGoogle Scholar
  45. [45]
    NA22 collaboration, M. Adamus et al., Study of elastic π + p, K + p and pp scattering at 250 GeV/c, Phys. Lett. B 186 (1987) 223 [SPIRES].ADSGoogle Scholar
  46. [46]
    CDF collaboration, F. Abe et al., Measurement of small angle anti-proton-proton elastic scattering at \( \sqrt {s} = 546 \) GeV and 1800 GeV, Phys. Rev. D 50 (1994) 5518 [SPIRES].ADSGoogle Scholar
  47. [47]
    CDF collaboration, F. Abe et al., Measurement of the anti-proton proton total cross-section at \( \sqrt {s} = 546 \) GeV and 1800 GeV, Phys. Rev. D 50 (1994) 5550 [SPIRES].ADSGoogle Scholar
  48. [48]
    E-710 collaboration, N.A. Amos et al., A luminosity independent measurement of the \( \bar{p}p \) total cross-section at \( \sqrt {s} = 1.8 \) TeV, Phys. Lett. B 243 (1990) 158 [SPIRES].ADSGoogle Scholar
  49. [49]
    E-710 collaboration, N.A. Amos et al., Anti-proton-proton elastic scattering at \( \sqrt {s} = 1.8 \) TeV from |t| =0.034 GeV/c 2 to 0.65 GeV/c 2, Phys. Lett. B 247 (1990) 127 [SPIRES].ADSGoogle Scholar
  50. [50]
    E-811 collaboration, C. Avila et al., The ratio, ρ, of the real to the imaginary part of the \( \bar{p}p \) forward elastic scattering amplitude at \( \sqrt {s} = 1.8 \) TeV, Phys. Lett. B 537 (2002) 41 [SPIRES].ADSGoogle Scholar
  51. [51]
    UA4/2 collaboration, C. Augier et al., Measurement of the proton-anti-proton total cross-section at the \( S\bar{p}pS \) collider by a luminosity dependent method, Phys. Lett. B 344 (1995) 451 [SPIRES].ADSGoogle Scholar
  52. [52]
    M.M. Block, F. Halzen and T. Stanev, Extending the frontiers: reconciling accelerator and cosmic ray pp cross sections, Phys. Rev. D 62 (2000) 077501 [hep-ph/0004232] [SPIRES].ADSGoogle Scholar
  53. [53]
    ZEUS collaboration, S. Chekanov et al., Study of deep inelastic inclusive and diffractive scattering with the ZEUS forward plug calorimeter, Nucl. Phys. B 713 (2005) 3 [hep-ex/0501060] [SPIRES].ADSGoogle Scholar
  54. [54]
    H1 collaboration, A. Aktas et al., Measurement of deeply virtual Compton scattering at HERA, Eur. Phys. J. C 44 (2005) 1 [hep-ex/0505061] [SPIRES].ADSGoogle Scholar
  55. [55]
    H1 collaboration, F.D. Aaron et al., Measurement of deeply virtual compton scattering and its t-dependence at HERA, Phys. Lett. B 659 (2008) 796 [arXiv:0709.4114] [SPIRES].ADSGoogle Scholar
  56. [56]
    L. Lönnblad, T hePEG, PYTHIA 7, HERWIG++ and Ariadne, Nucl. Instrum. Meth. A 559 (2006) 246 [SPIRES].ADSGoogle Scholar
  57. [57]
    M. Bähr et al., HERWIG++ physics and manual, Eur. Phys. J. C 58 (2008) 639 [arXiv:0803.0883] [SPIRES].CrossRefADSGoogle Scholar
  58. [58]
    A. Buckley et al., Rivet user manual, arXiv:1003.0694 [SPIRES].
  59. [59]
    ATLAS collaboration, G. Aad et al., Measurement of underlying event characteristics using charged particles in pp collisions at \( \sqrt {s} = 900 \) GeV and 7 TeV with the ATLAS detector, Phys. Rev. D 83 (2011) 112001 [arXiv:1012.0791] [SPIRES].ADSGoogle Scholar
  60. [60]
    ATLAS collaboration, G. Aad et al., Charged-particle multiplicities in pp interactions measured with the ATLAS detector at the LHC, New J. Phys. 13 (2011) 053033 [arXiv:1012.5104] [SPIRES].CrossRefADSGoogle Scholar
  61. [61]
    CDF collaboration, T. Affolder et al., Charged jet evolution and the underlying event in proton-anti-proton collisions at 1.8 TeV, Phys. Rev. D 65 (2002) 092002 [SPIRES].ADSGoogle Scholar
  62. [62]
    A. Buckley et al., General-purpose event generators for LHC physics, Phys. Rept. 504 (2011) 145 [arXiv:1101.2599] [SPIRES].CrossRefADSGoogle Scholar
  63. [63]
    R. Corke and T. Sjöstrand, Interleaved parton showers and tuning prospects, JHEP 03 (2011) 032 [arXiv:1011.1759] [SPIRES].CrossRefADSGoogle Scholar
  64. [64]
    CDF collaboration, R. Field, Min-bias and the underlying event in Run 2 at CDF, Acta Phys. Polon. B 36 (2005) 167 [SPIRES].ADSGoogle Scholar
  65. [65]
    C. Flensburg, G. Gustafson, L. Lönnblad and A. Ster, Correlations in double parton distributions at small x, JHEP 06 (2011) 066 [arXiv:1103.4320] [SPIRES].CrossRefADSGoogle Scholar

Copyright information

© The Author(s) 2011

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  • Christoffer Flensburg
    • 1
  • Gösta Gustafson
    • 1
  • Leif Lönnblad
    • 1
    • 2
  1. 1.Dept. of Astronomy and Theoretical PhysicsLund UniversityLundSweden
  2. 2.CERN Theory UnitGeneva 23Switzerland

Personalised recommendations