Advertisement

Probing the supersymmetric type III seesaw: LFV at low-energies and at the LHC

  • A. AbadaEmail author
  • A. J. R. Figueiredo
  • J. C. Romão
  • A. M. Teixeira
Open Access
Article

Abstract

We consider a supersymmetric type III seesaw, where the additional heavy states are embedded into complete SU(5) representations to preserve gauge coupling unification. Complying with phenomenological and experimental constraints strongly tightens the viable parameter space of the model. In particular, one expects very characteristic signals of lepton flavour violation both at low-energies and at the LHC, which offer the possibility of falsifying the model.

Keywords

Neutrino Physics Supersymmetric Standard Model 

References

  1. [1]
    P. Minkowski, μ → eγ at a rate of one out of 1-billion muon decays?, Phys. Lett. B 67 (1977) 421 [SPIRES].
  2. [2]
    M. Gell-Mann, P. Ramond and R. Slansky, Complex spinors and unified theories, in Supergravity, P. Van. Nieuwenhuizen and D. Z. Freedman eds., North-Holland, Amsterdam The Netherlands (1979).Google Scholar
  3. [3]
    T. Yanagida, Horizontal gauge symmetry and masses of neutrinos, in the proceedings of the Workshop on the unified theory and the baryon number in the universe, February 13–14, KEK, Tsukuba, Japan (1979).Google Scholar
  4. [4]
    S.L. Glashow, The future of elementary particle physics, in Quarks and leptons, M. Lévy et al. eds., Plenum Press, New York, U.S.A. (1980) [NATO Adv. Study Inst. Ser. B Phys. 59 (1980) 687].Google Scholar
  5. [5]
    R.N. Mohapatra and G. Senjanović, Neutrino mass and spontaneous parity nonconservation, Phys. Rev. Lett. 44 (1980) 912 [SPIRES].CrossRefADSGoogle Scholar
  6. [6]
    R. Barbieri, D.V. Nanopoulos, G. Morchio and F. Strocchi, Neutrino masses in grand unified theories, Phys. Lett. B 90 (1980) 91 [SPIRES].ADSGoogle Scholar
  7. [7]
    R.E. Marshak and R.N. Mohapatra, Selection rules for baryon number nonconservation in gauge models, invited talk given at Orbis Scientiae, January 14–17, Coral Gables, U.S.A. (1980) [SPIRES].
  8. [8]
    T.P. Cheng and L.-F. Li, Neutrino masses, mixings and oscillations in SU(2) × U(1) models of electroweak interactions, Phys. Rev. D 22 (1980) 2860 [SPIRES].ADSGoogle Scholar
  9. [9]
    M. Magg and C. Wetterich, Neutrino mass problem and gauge hierarchy, Phys. Lett. B 94 (1980) 61 [SPIRES].ADSGoogle Scholar
  10. [10]
    G. Lazarides, Q. Shafi and C. Wetterich, Proton lifetime and fermion masses in an SO(10) model, Nucl. Phys. B 181 (1981) 287 [SPIRES].CrossRefADSGoogle Scholar
  11. [11]
    J. Schechter and J.W.F. Valle, Neutrino masses in SU(2) × U(1) theories, Phys. Rev. D 22 (1980) 2227 [SPIRES].ADSGoogle Scholar
  12. [12]
    R.N. Mohapatra and G. Senjanović, Neutrino masses and mixings in gauge models with spontaneous parity violation, Phys. Rev. D 23 (1981) 165 [SPIRES].ADSGoogle Scholar
  13. [13]
    E. Ma, Pathways to naturally small neutrino masses, Phys. Rev. Lett. 81 (1998) 1171 [hep-ph/9805219] [SPIRES].CrossRefADSGoogle Scholar
  14. [14]
    R. Foot, H. Lew, X.G. He and G.C. Joshi, Seesaw neutrino masses induced by a triplet of leptons, Z. Phys. C 44 (1989) 441 [SPIRES].Google Scholar
  15. [15]
    G. Jungman, M. Kamionkowski and K. Griest, Supersymmetric dark matter, Phys. Rept. 267 (1996) 195 [hep-ph/9506380] [SPIRES].CrossRefADSGoogle Scholar
  16. [16]
    G. Bertone, D. Hooper and J. Silk, Particle dark matter: evidence, candidates and constraints, Phys. Rept. 405 (2005) 279 [hep-ph/0404175] [SPIRES].CrossRefADSGoogle Scholar
  17. [17]
    D. Larson et al., Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: power spectra and WMAP-derived parameters, Astrophys. J. Suppl. 192 (2011) 16 [arXiv:1001.4635] [SPIRES].CrossRefADSGoogle Scholar
  18. [18]
    J. Hisano, T. Moroi, K. Tobe and M. Yamaguchi, Lepton-flavor violation via right-handed neutrino Yukawa couplings in supersymmetric standard model, Phys. Rev. D 53 (1996) 2442 [hep-ph/9510309] [SPIRES].ADSGoogle Scholar
  19. [19]
    J. Hisano, T. Moroi, K. Tobe, M. Yamaguchi and T. Yanagida, Lepton flavor violation in the supersymmetric standard model with seesaw induced neutrino masses, Phys. Lett. B 357 (1995) 579 [hep-ph/9501407] [SPIRES].ADSGoogle Scholar
  20. [20]
    J. Hisano and D. Nomura, Solar and atmospheric neutrino oscillations and lepton flavor violation in supersymmetric models with the right-handed neutrinos, Phys. Rev. D 59 (1999) 116005 [hep-ph/9810479] [SPIRES].ADSGoogle Scholar
  21. [21]
    W. Buchmüller, D. Delepine and F. Vissani, Neutrino mixing and the pattern of supersymmetry breaking, Phys. Lett. B 459 (1999) 171 [hep-ph/9904219] [SPIRES].ADSGoogle Scholar
  22. [22]
    Y. Kuno and Y. Okada, Muon decay and physics beyond the standard model, Rev. Mod. Phys. 73 (2001) 151 [hep-ph/9909265] [SPIRES].CrossRefADSGoogle Scholar
  23. [23]
    J.A. Casas and A. Ibarra, Oscillating neutrinos and μ → , Nucl. Phys. B 618 (2001) 171 [hep-ph/0103065] [SPIRES].CrossRefADSGoogle Scholar
  24. [24]
    S. Lavignac, I. Masina and C.A. Savoy, τ → μγ and μ → eγ as probes of neutrino mass models, Phys. Lett. B 520 (2001) 269 [hep-ph/0106245] [SPIRES].ADSGoogle Scholar
  25. [25]
    X.-J. Bi and Y.-B. Dai, Lepton flavor violation and its constraints on the neutrino mass models, Phys. Rev. D 66 (2002) 076006 [hep-ph/0112077] [SPIRES].ADSGoogle Scholar
  26. [26]
    J.R. Ellis, J. Hisano, M. Raidal and Y. Shimizu, A new parametrization of the seesaw mechanism and applications in supersymmetric models, Phys. Rev. D 66 (2002) 115013 [hep-ph/0206110] [SPIRES].ADSGoogle Scholar
  27. [27]
    F. Deppisch, H. Pas, A. Redelbach, R. Ruckl and Y. Shimizu, Probing the Majorana mass scale of right-handed neutrinos in mSUGRA, Eur. Phys. J. C 28 (2003) 365 [hep-ph/0206122] [SPIRES].ADSGoogle Scholar
  28. [28]
    T. Fukuyama, T. Kikuchi and N. Okada, Lepton flavor violating processes and muon g − 2 in minimal supersymmetric SO(10) model, Phys. Rev. D 68 (2003) 033012 [hep-ph/0304190] [SPIRES].ADSGoogle Scholar
  29. [29]
    A. Brignole and A. Rossi, Anatomy and phenomenology of μτ lepton flavour violation in the MSSM, Nucl. Phys. B 701 (2004) 3 [hep-ph/0404211] [SPIRES].CrossRefADSGoogle Scholar
  30. [30]
    A. Masiero, S.K. Vempati and O. Vives, Massive neutrinos and flavour violation, New J. Phys. 6 (2004) 202 [hep-ph/0407325] [SPIRES].CrossRefADSGoogle Scholar
  31. [31]
    T. Fukuyama, A. Ilakovac and T. Kikuchi, Lepton flavour violating leptonic/semileptonic decays of charged leptons in the minimal supersymmetric standard model, Eur. Phys. J. C 56 (2008) 125 [hep-ph/0506295] [SPIRES].CrossRefADSGoogle Scholar
  32. [32]
    S.T. Petcov, W. Rodejohann, T. Shindou and Y. Takanishi, The see-saw mechanism, neutrino Yukawa couplings, LFV decays l(i) → l(j) + γ and leptogenesis, Nucl. Phys. B 739 (2006) 208 [hep-ph/0510404] [SPIRES].CrossRefADSGoogle Scholar
  33. [33]
    E. Arganda and M.J. Herrero, Testing supersymmetry with lepton flavor violating τ and μ decays, Phys. Rev. D 73 (2006) 055003 [hep-ph/0510405] [SPIRES].ADSGoogle Scholar
  34. [34]
    F. Deppisch, H. Pas, A. Redelbach and R. Ruckl, Constraints on SUSY seesaw parameters from leptogenesis and lepton flavor violation, Phys. Rev. D 73 (2006) 033004 [hep-ph/0511062] [SPIRES].ADSGoogle Scholar
  35. [35]
    C.E. Yaguna, Constraining mSUGRA parameters with μ → eγ and μ-e conversion in nuclei, Int. J. Mod. Phys. A 21 (2006) 1283 [hep-ph/0502014] [SPIRES].ADSGoogle Scholar
  36. [36]
    L. Calibbi, A. Faccia, A. Masiero and S.K. Vempati, Lepton flavour violation from SUSY-GUTs: Where do we stand for MEG, PRISM/PRIME and a super flavour factory, Phys. Rev. D 74 (2006) 116002 [hep-ph/0605139] [SPIRES].ADSGoogle Scholar
  37. [37]
    S. Antusch, E. Arganda, M.J. Herrero and A.M. Teixeira, Impact of θ 13 on lepton flavour violating processes within SUSY seesaw, JHEP 11 (2006) 090 [hep-ph/0607263] [SPIRES].CrossRefADSGoogle Scholar
  38. [38]
    M. Hirsch, J.W.F. Valle, W. Porod, J.C. Romao and A. Villanova del Moral, Probing minimal supergravity in type-I seesaw with lepton flavour violation at the LHC, Phys. Rev. D 78 (2008) 013006 [arXiv:0804.4072] [SPIRES].ADSGoogle Scholar
  39. [39]
    E. Arganda, M.J. Herrero and A.M. Teixeira, μ-e conversion in nuclei within the CMSSM seesaw: universality versus non-universality, JHEP 10 (2007) 104 [arXiv:0707.2955] [SPIRES].CrossRefADSGoogle Scholar
  40. [40]
    E. Arganda, M.J. Herrero and J. Portoles, Lepton flavour violating semileptonic tau decays in constrained MSSM-seesaw scenarios, JHEP 06 (2008) 079 [arXiv:0803.2039] [SPIRES].CrossRefADSGoogle Scholar
  41. [41]
    N. Arkani-Hamed, H.-C. Cheng, J.L. Feng and L.J. Hall, Probing lepton flavor violation at future colliders, Phys. Rev. Lett. 77 (1996) 1937 [hep-ph/9603431] [SPIRES].CrossRefADSGoogle Scholar
  42. [42]
    I. Hinchliffe and F.E. Paige, Lepton flavor violation at the LHC, Phys. Rev. D 63 (2001) 115006 [hep-ph/0010086] [SPIRES].ADSGoogle Scholar
  43. [43]
    D.F. Carvalho, J.R. Ellis, M.E. Gomez, S. Lola and J.C. Romao, τ flavour violation in sparticle decays at the LHC, Phys. Lett. B 618 (2005) 162 [hep-ph/0206148] [SPIRES].ADSGoogle Scholar
  44. [44]
    E. Carquin, J. Ellis, M.E. Gomez, S. Lola and J. Rodriguez-Quintero, Search for τ flavour violation at the LHC, JHEP 05 (2009) 026 [arXiv:0812.4243] [SPIRES].CrossRefADSGoogle Scholar
  45. [45]
    F.E. Paige, Determining SUSY particle masses at LHC, in the proceedings of the DPF/DPB summer study on new directions for high-energy physics (Snowmass 96), June 25–July 12, Snowmass, Colorado, U.S.A. (1996), hep-ph/9609373 [SPIRES].
  46. [46]
    I. Hinchliffe, F.E. Paige, M.D. Shapiro, J. Soderqvist and W. Yao, Precision SUSY measurements at CERN LHC, Phys. Rev. D 55 (1997) 5520 [hep-ph/9610544] [SPIRES].ADSGoogle Scholar
  47. [47]
    H. Bachacou, I. Hinchliffe and F.E. Paige, Measurements of masses in SUGRA models at CERN LHC, Phys. Rev. D 62 (2000) 015009 [hep-ph/9907518] [SPIRES].ADSGoogle Scholar
  48. [48]
    CMS collaboration, G.L. Bayatian et al., CMS technical design report, volume II: physics performance, J. Phys. G 34 (2007) 995 [SPIRES].ADSGoogle Scholar
  49. [49]
    ATLAS v collaboration, W.W. Armstrong et al., ATLAS: technical proposal for a general-purpose pp experiment at the Large Hadron Collider at CERN, CERN-LHCC-94-43 (1994) [SPIRES].
  50. [50]
    The ATLAS collaboration, G. Aad et al., Expected performance of the ATLAS experiment — Detector, trigger and physics, arXiv:0901.0512 [SPIRES].
  51. [51]
    A. Abada, A.J.R. Figueiredo, J.C. Romao and A.M. Teixeira, Interplay of LFV and slepton mass splittings at the LHC as a probe of the SUSY seesaw, JHEP 10 (2010) 104 [arXiv:1007.4833] [SPIRES].CrossRefADSGoogle Scholar
  52. [52]
    R. Foot, H. Lew, X.G. He and G.C. Joshi, Seesaw neutrino masses induced by a triplet of leptons, Z. Phys. C 44 (1989) 441 [SPIRES].Google Scholar
  53. [53]
    M.R. Buckley and H. Murayama, How can we test seesaw experimentally?, Phys. Rev. Lett. 97 (2006) 231801 [hep-ph/0606088] [SPIRES].CrossRefADSGoogle Scholar
  54. [54]
    B. Bajc and G. Senjanović, Seesaw at LHC, JHEP 08 (2007) 014 [hep-ph/0612029] [SPIRES].CrossRefADSGoogle Scholar
  55. [55]
    C. Biggio and L. Calibbi, Phenomenology of SUSY SU(5) with type-I + III seesaw, JHEP 10 (2010) 037 [arXiv:1007.3750] [SPIRES].CrossRefADSGoogle Scholar
  56. [56]
    J.N. Esteves, J.C. Romao, M. Hirsch, F. Staub and W. Porod, Supersymmetric type-III seesaw: lepton flavour violating decays and dark matter, Phys. Rev. D 83 (2011) 013003 [arXiv:1010.6000] [SPIRES].ADSGoogle Scholar
  57. [57]
    I. Hinchliffe and F.E. Paige, Measurements in SUGRA models with large tanβ at LHC, Phys. Rev. D 61 (2000) 095011 [hep-ph/9907519] [SPIRES].ADSGoogle Scholar
  58. [58]
    H. Bachacou, I. Hinchliffe and F.E. Paige, Measurements of masses in SUGRA models at CERN LHC, Phys. Rev. D 62 (2000) 015009 [hep-ph/9907518] [SPIRES].ADSGoogle Scholar
  59. [59]
    B.C. Allanach, J.P. Conlon and C.G. Lester, Measuring smuon-selectron mass splitting at the CERN LHC and patterns of supersymmetry breaking, Phys. Rev. D 77 (2008) 076006 [arXiv:0801.3666] [SPIRES].ADSGoogle Scholar
  60. [60]
    ATLAS collaboration, G. Aad et al., Search for supersymmetry using final states with one lepton, jets and missing transverse momentum with the ATLAS detector in \( \sqrt {s} = 7 \) TeV pp, Phys. Rev. Lett. 106 (2011) 131802 [arXiv:1102.2357] [SPIRES].CrossRefADSGoogle Scholar
  61. [61]
    CMS collaboration, V. Khachatryan et al., Search for supersymmetry in pp collisions at 7 TeV in events with jets and missing transverse energy, Phys. Lett. B 698 (2011) 196 [arXiv:1101.1628] [SPIRES].ADSGoogle Scholar
  62. [62]
    A.J. Buras, L. Calibbi and P. Paradisi, Slepton mass-splittings as a signal of LFV at the LHC, JHEP 06 (2010) 042 [arXiv:0912.1309] [SPIRES].CrossRefADSGoogle Scholar
  63. [63]
    M. Raidal et al., Flavour physics of leptons and dipole moments, Eur. Phys. J. C 57 (2008) 13 [arXiv:0801.1826] [SPIRES].CrossRefADSGoogle Scholar
  64. [64]
    W. Porod, SPheno, a program for calculating supersymmetric spectra, SUSY particle decays and SUSY particle production at e + e colliders, Comput. Phys. Commun. 153 (2003) 275 [hep-ph/0301101] [SPIRES].CrossRefADSGoogle Scholar
  65. [65]
    F. Staub, SARAH, Comput. Phys. Commun. 181 (2010) 1077 [arXiv:0806.0538] [SPIRES].CrossRefzbMATHADSGoogle Scholar
  66. [66]
    G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, Dark matter direct detection rate in a generic model with MicrOMEGAs2.1, Comput. Phys. Commun. 180 (2009) 747 [arXiv:0803.2360] [SPIRES].CrossRefzbMATHADSGoogle Scholar
  67. [67]
    M.C. Gonzalez-Garcia, M. Maltoni and J. Salvado, Updated global fit to three neutrino mixing: status of the hints of θ 13> 0, JHEP 04 (2010) 056 [arXiv:1001.4524] [SPIRES].CrossRefADSGoogle Scholar
  68. [68]
    Particle Data Group collaboration, K. Nakamura et al., Review of particle physics, J. Phys. G 37 (2010) 075021 [SPIRES].ADSGoogle Scholar
  69. [69]
    MEG collaboration, O.A. Kiselev, Positron spectrometer of MEG experiment at PSI, Nucl. Instrum. Meth. A 604 (2009) 304 [SPIRES].ADSGoogle Scholar
  70. [70]
    Belle collaboration, K. Hayasaka et al., New search for τ → μγ and τ → eγ decays at Belle, Phys. Lett. B 666 (2008) 16 [arXiv:0705.0650] [SPIRES].ADSGoogle Scholar
  71. [71]
    SuperB collaboration, M. Bona et al., SuperB: a high-luminosity asymmetric e + e super flavor factory. Conceptual design report, arXiv:0709.0451 [SPIRES].
  72. [72]
    D. Glenzinski, The Mu2e experiment at Fermilab, AIP Conf. Proc. 1222 (2010) 383 [SPIRES].CrossRefADSGoogle Scholar
  73. [73]
    COMET collaboration, Y.G. Cui et al., Conceptual design report for experimental search for lepton flavor violating μ -e conversion at sensitivity of 10−16 with a slow-extracted bunched proton beam (COMET), KEK-2009-10 [SPIRES].
  74. [74]
    LEP Working Group for Higgs boson searches collaboration, R. Barate et al., Search for the standard model Higgs boson at LEP, Phys. Lett. B 565 (2003) 61 [hep-ex/0306033] [SPIRES].ADSGoogle Scholar
  75. [75]
    P. Totaro, High mass SM Higgs, talk given at the XLVIth Rencontres de Moriond. Electroweak interactions and unified theories, March 13–20, La Thuile, France (2011).Google Scholar
  76. [76]
    K. Petridis, Search for low mass Higgs boson at the Tevatron, talk given at the XLVtIh Rencontres de Moriond. Electroweak interactions and unified theories, March 13–20, La Thuile, France (2011).Google Scholar

Copyright information

© The Author(s) 2011

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  • A. Abada
    • 1
    Email author
  • A. J. R. Figueiredo
    • 2
  • J. C. Romão
    • 2
  • A. M. Teixeira
    • 3
  1. 1.Laboratoire de Physique Théorique, CNRS — UMR 8627Université de Paris-Sud 1Orsay CedexFrance
  2. 2.Centro de Física Teórica de PartículasInstituto Superior TécnicoLisboaPortugal
  3. 3.Laboratoire de Physique Corpusculaire, CNRS/IN2P3 — UMR 6533, Campus des CézeauxAubière CedexFrance

Personalised recommendations