Model-independent searches for new quarks at the LHC

  • Anupama AtreEmail author
  • Georges Azuelos
  • Marcela Carena
  • Tao Han
  • Erkcan Ozcan
  • José Santiago
  • Gokhan Unel
Open Access


New vector-like quarks can have sizable couplings to first generation quarks without conflicting with current experimental constraints. The coupling with valence quarks and unique kinematics make single production the optimal discovery process. We perform a model-independent analysis of the discovery reach at the Large Hadron Collider for new vector-like quarks considering single production and subsequent decays via electroweak interactions. An early LHC run with 7 TeV center of mass energy and 1 fb−1 of integrated luminosity can probe heavy quark masses up to 1 TeV and can be competitive with the Tevatron reach of 10 fb−1. The LHC with 14 TeV center of mass energy and 100 fb−1 of integrated luminosity can probe heavy quark masses up to 3.7 TeV for order one couplings.


Beyond Standard Model Phenomenological Models Hadronic Colliders 


  1. [1]
    F. del Aguila, M. Pérez-Victoria and J. Santiago, Effective description of quark mixing, Phys. Lett. B 492 (2000) 98 [hep-ph/0007160] [SPIRES].ADSGoogle Scholar
  2. [2]
    F. del Aguila, M. Pérez-Victoria and J. Santiago, Observable contributions of new exotic quarks to quark mixing, JHEP 09 (2000) 011 [hep-ph/0007316] [SPIRES].CrossRefGoogle Scholar
  3. [3]
    F. del Aguila, J. de Blas and M. Pérez-Victoria, Effects of new leptons in electroweak precision data, Phys. Rev. D 78 (2008) 013010 [arXiv:0803.4008] [SPIRES].ADSGoogle Scholar
  4. [4]
    A. Atre, M. Carena, T. Han and J. Santiago, Heavy quarks above the top at the Tevatron, Phys. Rev. D 79 (2009) 054018 [arXiv:0806.3966] [SPIRES].ADSGoogle Scholar
  5. [5]
    K. Agashe, R. Contino, L. Da Rold and A. Pomarol, A custodial symmetry for \( Zb\bar{b} \), Phys. Lett. B 641 (2006) 62 [hep-ph/0605341] [SPIRES].ADSGoogle Scholar
  6. [6]
    M.S. Carena, E. Ponton, J. Santiago and C.E.M. Wagner, Light Kaluza-Klein states in Randall-Sundrum models with custodial SU(2), Nucl. Phys. B 759 (2006) 202 [hep-ph/0607106] [SPIRES].ADSMathSciNetCrossRefGoogle Scholar
  7. [7]
    G. Cacciapaglia, C. Csáki, G. Marandella and J. Terning, A new custodian for a realistic Higgsless model, Phys. Rev. D 75 (2007) 015003 [hep-ph/0607146] [SPIRES].ADSGoogle Scholar
  8. [8]
    R. Contino, L. Da Rold and A. Pomarol, Light custodians in natural composite Higgs models, Phys. Rev. D 75 (2007) 055014 [hep-ph/0612048] [SPIRES].ADSGoogle Scholar
  9. [9]
    M.S. Carena, E. Ponton, J. Santiago and C.E.M. Wagner, Electroweak constraints on warped models with custodial symmetry, Phys. Rev. D 76 (2007) 035006 [hep-ph/0701055] [SPIRES].ADSGoogle Scholar
  10. [10]
    M. Carena, A.D. Medina, N.R. Shah and C.E.M. Wagner, Gauge-Higgs unification, neutrino masses and dark matter in warped extra dimensions, Phys. Rev. D 79 (2009) 096010 [arXiv:0901.0609] [SPIRES].ADSGoogle Scholar
  11. [11]
    M.E. Albrecht, M. Blanke, A.J. Buras, B. Duling and K. Gemmler, Electroweak and flavour structure of a warped extra dimension with custodial protection, JHEP 09 (2009) 064 [arXiv:0903.2415] [SPIRES].ADSCrossRefGoogle Scholar
  12. [12]
    F. del Aguila, A. Carmona and J. Santiago, Neutrino masses from an A 4 symmetry in holographic composite Higgs models, JHEP 08 (2010) 127 [arXiv:1001.5151] [SPIRES].ADSCrossRefGoogle Scholar
  13. [13]
    S. Casagrande, F. Goertz, U. Haisch, M. Neubert and T. Pfoh, The custodial Randall-Sundrum model: from precision tests to Higgs physics, JHEP 09 (2010) 014 [arXiv:1005.4315] [SPIRES].ADSCrossRefGoogle Scholar
  14. [14]
    M. Carena, A.D. Medina, B. Panes, N.R. Shah and C.E.M. Wagner, Collider phenomenology of gauge-Higgs unification scenarios in warped extra dimensions, Phys. Rev. D 77 (2008) 076003 [arXiv:0712.0095] [SPIRES].ADSGoogle Scholar
  15. [15]
    R. Contino and G. Servant, Discovering the top partners at the LHC using same-sign dilepton final states, JHEP 06 (2008) 026 [arXiv:0801.1679] [SPIRES].ADSCrossRefGoogle Scholar
  16. [16]
    J.A. Aguilar-Saavedra, Identifying top partners at LHC, JHEP 11 (2009) 030 [arXiv:0907.3155] [SPIRES].ADSCrossRefGoogle Scholar
  17. [17]
    J. Mrazek and A. Wulzer, A strong sector at the LHC: top partners in same-sign dileptons, Phys. Rev. D 81 (2010) 075006 [arXiv:0909.3977] [SPIRES].ADSGoogle Scholar
  18. [18]
    G. Dissertori, E. Furlan, F. Moortgat and P. Nef, Discovery potential of top-partners in a realistic composite Higgs model with early LHC data, JHEP 09 (2010) 019 [arXiv:1005.4414] [SPIRES].ADSCrossRefGoogle Scholar
  19. [19]
    D.E. Morrissey and C.E.M. Wagner, Beautiful mirrors, unification of couplings and collider phenomenology, Phys. Rev. D 69 (2004) 053001 [hep-ph/0308001] [SPIRES].ADSGoogle Scholar
  20. [20]
    K. Kumar, W. Shepherd, T.M.P. Tait and R. Vega-Morales, Beautiful mirrors at the LHC, JHEP 08 (2010) 052 [arXiv:1004.4895] [SPIRES].ADSCrossRefGoogle Scholar
  21. [21]
    F. del Aguila, A. Carmona and J. Santiago, Tau custodian searches at the LHC, Phys. Lett. B 695 (2011) 449 [arXiv:1007.4206] [SPIRES].ADSGoogle Scholar
  22. [22]
    F. Gursey and M. Serdaroglu, Basic fermion masses and mixings in the E 6 model, Lett. Nuovo Cim. 21 (1978) 28 [SPIRES].CrossRefGoogle Scholar
  23. [23]
    F. Gursey, P. Ramond and P. Sikivie, A universal gauge theory model based on E 6, Phys. Lett. B 60 (1976) 177 [SPIRES].ADSGoogle Scholar
  24. [24]
    S. Sultansoy and G. Unel, The E 6 inspired isosinglet quark and the Higgs boson, Phys. Lett. B 669 (2008) 39 [hep-ex/0610064] [SPIRES].ADSGoogle Scholar
  25. [25]
    R. Mehdiyev, A. Siodmok, S. Sultansoy and G. Unel, Down type isosinglet quarks in ATLAS, Eur. Phys. J. C 54 (2008) 507 [arXiv:0711.1116] [SPIRES].ADSCrossRefGoogle Scholar
  26. [26]
    F. del Aguila et al., Collider aspects of flavour physics at high Q, Eur. Phys. J. C 57 (2008) 183 [arXiv:0801.1800] [SPIRES].ADSGoogle Scholar
  27. [27]
    P.H. Frampton, P.Q. Hung and M. Sher, Quarks and leptons beyond the third generation, Phys. Rept. 330 (2000) 263 [hep-ph/9903387] [SPIRES].ADSCrossRefGoogle Scholar
  28. [28]
    B. Holdom et al., Four statements about the fourth generation, PMC Phys. A 3 (2009) 4 [arXiv:0904.4698] [SPIRES].ADSCrossRefGoogle Scholar
  29. [29]
    G.D. Kribs, T. Plehn, M. Spannowsky and T.M.P. Tait, Four generations and Higgs physics, Phys. Rev. D 76 (2007) 075016 [arXiv:0706.3718] [SPIRES].ADSGoogle Scholar
  30. [30]
    J. Erler and P. Langacker, Precision constraints on extra fermion generations, Phys. Rev. Lett. 105 (2010) 031801 [arXiv:1003.3211] [SPIRES].ADSCrossRefGoogle Scholar
  31. [31]
    H. Martinez, A. Melfo, F. Nesti and G. Senjanović, Three extra mirror or sequential families: a case for heavy Higgs and inert doublet, Phys. Rev. Lett. 106 (2011) 191802 [arXiv:1101.3796] [SPIRES].ADSCrossRefGoogle Scholar
  32. [32]
    O. Eberhardt, A. Lenz and J. Rohrwild, Less space for a new family of fermions, Phys. Rev. D 82 (2010) 095006 [arXiv:1005.3505] [SPIRES].ADSGoogle Scholar
  33. [33]
    I. Gogoladze, B. He and Q. Shafi, New fermions at the LHC and mass of the Higgs boson, Phys. Lett. B 690 (2010) 495 [arXiv:1004.4217] [SPIRES].ADSGoogle Scholar
  34. [34]
    F. del Aguila and M.J. Bowick, The possibility of new fermions withI = 0 mass, Nucl. Phys. B 224 (1983) 107. ADSCrossRefGoogle Scholar
  35. [35]
    M.E. Peskin and T. Takeuchi, Estimation of oblique electroweak corrections, Phys. Rev. D 46 (1992) 381 [SPIRES].ADSGoogle Scholar
  36. [36]
    F. del Aguila and M.J. Bowick, Suppression of lepton number violation mediated byI = 0 mass fermions, Phys. Lett. B 119 (1982) 144 [SPIRES].ADSGoogle Scholar
  37. [37]
    Z. Han and W. Skiba, Effective theory analysis of precision electroweak data, Phys. Rev. D 71 (2005) 075009 [hep-ph/0412166] [SPIRES].ADSGoogle Scholar
  38. [38]
    Z. Han, Electroweak constraints on effective theories with U(2) × U(1) flavor symmetry, Phys. Rev. D 73 (2006) 015005 [hep-ph/0510125] [SPIRES].ADSGoogle Scholar
  39. [39]
    G.H. Brooijmans et al., New physics at the LHC: a Les Houches report. Physics at TeV Colliders 2007 — New Physics Working Group, arXiv:0802.3715 [SPIRES].
  40. [40]
    G. Cacciapaglia, A. Deandrea, D. Harada and Y. Okada, Bounds and decays of new heavy vector-like top partners, JHEP 11 (2010) 159 [arXiv:1007.2933] [SPIRES].ADSCrossRefGoogle Scholar
  41. [41]
    J. Pumplin et al., New generation of parton distributions with uncertainties from global QCD analysis, JHEP 07 (2002) 012 [hep-ph/0201195] [SPIRES].ADSCrossRefGoogle Scholar
  42. [42]
    J. Alwall et al., MadGraph/MadEvent v4: the new web generation, JHEP 09 (2007) 028 [arXiv:0706.2334] [SPIRES].ADSCrossRefGoogle Scholar
  43. [43]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [SPIRES].ADSCrossRefGoogle Scholar
  44. [44]
    S. Ovyn, X. Rouby and V. Lemaitre, Delphes, a framework for fast simulation of a generic collider experiment, arXiv:0903.2225 [SPIRES].
  45. [45]
    T. Han, G. Valencia and S. Willenbrock, Structure function approach to vector boson scattering in pp collisions, Phys. Rev. Lett. 69 (1992) 3274 [hep-ph/9206246] [SPIRES].ADSCrossRefGoogle Scholar
  46. [46]
    T. Figy, C. Oleari and D. Zeppenfeld, QCD corrections to vector boson fusion processes, Nucl. Phys. Proc. Suppl. 135 (2004) 9 [hep-ph/0407066] [SPIRES].ADSCrossRefGoogle Scholar
  47. [47]
    J. Alwall et al., Comparative study of various algorithms for the merging of parton showers and matrix elements in hadronic collisions, Eur. Phys. J. C 53 (2008) 473 [arXiv:0706.2569] [SPIRES].ADSCrossRefGoogle Scholar
  48. [48]
    J. Alwall et al., New developments in MadGraph/MadEvent, AIP Conf. Proc. 1078 (2009) 84 [arXiv:0809.2410] [SPIRES].ADSGoogle Scholar
  49. [49]
    J.E. Gaiser, Charmonium spectroscopy from radiative decays of the J/Ψ and Ψ′, Ph.D. Thesis, Stanford University, Stanford U.S.A. (1982), SLAC-R-255 [SPIRES].
  50. [50]
    ATLAS collaboration, G. Aad et al., Expected performance of the ATLAS experiment: detector, trigger and physics, CERN-OPEN-2008-020 [arXiv:0901.0512][SPIRES].
  51. [51]
    The CDF collaboration, Search for heavy top t′ → Wq in lepton plus jets events in \( \int {\mathcal{L}dt = 4.6\;f{b^{ - 1}}} \), CDF-Note-10110.Google Scholar
  52. [52]
    The CDF collaboration, T. Aaltonen et al., Search for new particles leading to Z + jets final states in \( p\bar{p} \) collisions at \( \sqrt {s} = 1.96 \) TeV, Phys. Rev. D 76 (2007) 072006 [arXiv:0706.3264] [SPIRES].ADSGoogle Scholar
  53. [53]
    The CDF collaboration, Search for single production of heavy quarks, CDF-Note-10261.Google Scholar
  54. [54]
    D0 collaboration, V.M. Abazov et al., Search for single vector-like quarks in \( p\bar{p} \) collisions at \( \sqrt {s} = 1.96 \) TeV, Phys. Rev. Lett. 106 (2011) 081801 [arXiv:1010.1466] [SPIRES].ADSCrossRefGoogle Scholar
  55. [55]
    CMS collaboration, G.L. Bayatian et al., CMS physics: technical design report, CERN-LHCC-2006-001 [SPIRES].

Copyright information

© The Author(s) 2011

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  • Anupama Atre
    • 1
    • 2
    Email author
  • Georges Azuelos
    • 3
    • 4
  • Marcela Carena
    • 1
    • 5
  • Tao Han
    • 6
  • Erkcan Ozcan
    • 7
    • 8
  • José Santiago
    • 9
  • Gokhan Unel
    • 10
  1. 1.FermilabBataviaU.S.A.
  2. 2.Michigan State UniversityEast LansingU.S.A.
  3. 3.University of MontrealMontrealCanada
  4. 4.TRIUMFVancouverCanada
  5. 5.University of ChicagoChicagoU.S.A.
  6. 6.University of WisconsinMadisonU.S.A.
  7. 7.University CollegeLondonU.K.
  8. 8.Bogazici UniversityIstanbulTurkey
  9. 9.University of GranadaGranadaSpain
  10. 10.University of CaliforniaIrvineU.S.A.

Personalised recommendations