A transfer matrix method for resonances in Randall-Sundrum models

  • R. R. Landim
  • G. Alencar
  • M. O. Tahim
  • R. N. Costa Filho


In this paper we discuss in detail a numerical method to study resonances in membranes generated by domain walls in Randall-Sundrum-like scenarios. It is based on similar works to understand the quantum mechanics of electrons subject to the potential barriers that exist in heterostructures in semiconductors. This method was used recently to study resonances of a three form field and lately generalized to arbitrary forms. We apply it to a lot of important models, namely those that contain the Gauge, Gravity and Spinor fields. In many cases we find a rich structure of resonances which depends on the parameters involved.


Phenomenology of Large extra dimensions Phenomenology of Field Theories in Higher Dimensions 


  1. [1]
    G. Kim and G.B. Arnold, Theoretical study of tunneling phenomena in double-barrier quantum-well heterostructures, Phys. Rev. B 38 (1988) 3252.ADSGoogle Scholar
  2. [2]
    R. Renan, V.N. Freire, M.M. Auto and G.A. Farias, Transmission coefficient of electrons through a single graded barrier, Phys. Rev. B 49 (1993) 8446.ADSGoogle Scholar
  3. [3]
    R.R. L. de Carvalho, V.N. Freire, M.M. Auto and G. A. Farias, Transmission in symmetrical GaAs/Al x Ga 1−x As double barrier with compositionally nonabrupt interfaces, Superlat. Microstruct. 15 (1994) 203.ADSCrossRefGoogle Scholar
  4. [4]
    Y. Ando and T. Itoh, Calculation of transmission tunneling current across arbitrary potential barriers, J. Appl. Phys. 61 (1987) 1497.ADSCrossRefGoogle Scholar
  5. [5]
    L. Randall and R. Sundrum, An alternative to compactification, Phys. Rev. Lett. 83 (1999) 4690 [hep-th/9906064] [SPIRES].zbMATHADSMathSciNetCrossRefGoogle Scholar
  6. [6]
    L. Randall and R. Sundrum, A large mass hierarchy from a small extra dimension, Phys. Rev. Lett. 83 (1999) 3370 [hep-ph/9905221] [SPIRES].zbMATHADSMathSciNetCrossRefGoogle Scholar
  7. [7]
    B. Mukhopadhyaya, S. Sen, S. Sen and S. SenGupta, Bulk Kalb-Ramond field in Randall Sundrum scenario, Phys. Rev. D 70 (2004) 066009 [hep-th/0403098] [SPIRES].ADSGoogle Scholar
  8. [8]
    A. Arvanitaki, S. Dimopoulos, S. Dubovsky, N. Kaloper and J. March-Russell, String Axiverse, Phys. Rev. D 81 (2010) 123530 [arXiv:0905.4720] [SPIRES].ADSGoogle Scholar
  9. [9]
    P. Svrček and E. Witten, Axions in string theory, JHEP 06 (2006) 051 [hep-th/0605206] [SPIRES].ADSCrossRefGoogle Scholar
  10. [10]
    J. Polchinski, String theory. Vol. 1: An introduction to the bosonic string, Cambridge University Press, Cambridge U.K. (1998) SPIRES. CrossRefGoogle Scholar
  11. [11]
    J. Polchinski, String theory. Vol. 2: Superstring theory and beyond, Cambridge University Press, Cambridge U.K. (1998) [SPIRES].CrossRefGoogle Scholar
  12. [12]
    C. Germani and A. Kehagias, Higher-spin fields in braneworlds, Nucl. Phys. B 725 (2005) 15 [hep-th/0411269] [SPIRES].ADSMathSciNetCrossRefGoogle Scholar
  13. [13]
    B. Mukhopadhyaya, S. Sen and S. SenGupta, Bulk antisymmetric tensor fields in a Randall-Sundrum model, Phys. Rev. D 76 (2007) 121501 [arXiv:0709.3428] [SPIRES].ADSMathSciNetGoogle Scholar
  14. [14]
    G. De Risi, Bouncing cosmology from Kalb-Ramond Braneworld, Phys. Rev. D 77 (2008) 044030 [arXiv:0711.3781] [SPIRES].ADSGoogle Scholar
  15. [15]
    B. Mukhopadhyaya, S. Sen and S. SenGupta, A Randall-Sundrum scenario with bulk dilaton and torsion, Phys. Rev. D 79 (2009) 124029 [arXiv:0903.0722] [SPIRES].ADSGoogle Scholar
  16. [16]
    G. Alencar, M.O. Tahim, R.R. Landim, C.R. Muniz and R.N. Costa Filho, Bulk Antisymmetric tensor fields coupled to a dilaton in a Randall-Sundrum model, Phys. Rev. D 82 (2010) 104053 [arXiv:1005.1691] [SPIRES].ADSGoogle Scholar
  17. [17]
    M. Gremm, Four-dimensional gravity on a thick domain wall, Phys. Lett. B 478 (2000) 434 [hep-th/9912060] [SPIRES].ADSGoogle Scholar
  18. [18]
    Y. Brihaye, T. Delsate, N. Sawado and Y. Kodama, Inflating baby-Skyrme branes in six dimensions, Phys. Rev. D 82 (2010) 106002 [arXiv:1007.0736] [SPIRES].ADSGoogle Scholar
  19. [19]
    Y. Brihaye and T. Delsate, Inflating brane inside hyper-spherically symmetric defects, Class. Quant. Grav. 24 (2007) 1279 [gr-qc/0605039] [SPIRES].zbMATHADSMathSciNetCrossRefGoogle Scholar
  20. [20]
    Y. Brihaye, T. Delsate and B. Hartmann, Inflating branes inside abelian strings, Phys. Rev. D 74 (2006) 044015 [hep-th/0602172] [SPIRES].ADSMathSciNetGoogle Scholar
  21. [21]
    Y. Brihaye and T. Delsate, Remarks on bell-shaped lumps: stability and fermionic modes, Phys. Rev. D 78 (2008) 025014 [arXiv:0803.1458] [SPIRES].ADSGoogle Scholar
  22. [22]
    D. Bazeia, A.R. Gomes, L. Losano and R. Menezes, Braneworld Models of Scalar Fields with Generalized Dynamics, Phys. Lett. B 671 (2009) 402 [arXiv:0808.1815] [SPIRES].ADSMathSciNetGoogle Scholar
  23. [23]
    D. Bazeia, A.R. Gomes and L. Losano, Gravity localization on thick branes: a numerical approach, Int. J. Mod. Phys. A 24 (2009) 1135 [arXiv:0708.3530] [SPIRES].ADSGoogle Scholar
  24. [24]
    D. Bazeia, F.A. Brito and A.R. Gomes, Locally localized gravity and geometric transitions, JHEP 11 (2004) 070 [hep-th/0411088] [SPIRES].ADSMathSciNetCrossRefGoogle Scholar
  25. [25]
    D. Bazeia, C. Furtado and A.R. Gomes, Brane structure from scalar field in warped spacetime, JCAP 02 (2004) 002 [hep-th/0308034] [SPIRES].ADSMathSciNetGoogle Scholar
  26. [26]
    H.R. Christiansen, M.S. Cunha and M.O. Tahim, Exact solutions for a Maxwell-Kalb-Ramond action with dilaton: Localization of massless and massive modes in a sine-Gordon brane-world, Phys. Rev. D 82 (2010) 085023 [arXiv:1006.1366] [SPIRES].ADSGoogle Scholar
  27. [27]
    A. Kehagias and K. Tamvakis, Localized gravitons, gauge bosons and chiral fermions in smooth spaces generated by a bounce, Phys. Lett. B 504 (2001) 38 [hep-th/0010112] [SPIRES].ADSMathSciNetGoogle Scholar
  28. [28]
    G. Alencar, R.R. Landim, M.O. Tahim, C.R. Muniz and R.N. Costa Filho, Antisymmetric Tensor Fields in Randall Sundrum Thick Branes, Phys. Lett. B 693 (2010) 503 [arXiv:1008.0678] [SPIRES].ADSGoogle Scholar
  29. [29]
    R.R. Landim, G. Alencar, M.O. Tahim, M.A.M. Gomes and R.N.C. Filho, Dual Spaces of Resonance In Thick p − Branes, arXiv:1010.1548 [SPIRES].
  30. [30]
    G. Alencar et al., Antisymmetric Tensor Fields in Codimension Two Brane-World, Europhys. Lett. 93 (2011) 10003 [arXiv:1009.1183] [SPIRES].ADSCrossRefGoogle Scholar
  31. [31]
    D. Bazeia and L. Losano, Other results for deformed defects, Phys. Rev. D 73 (2006) 025016 [hep-th/0511193] [SPIRES].ADSMathSciNetGoogle Scholar
  32. [32]
    D. Bazeia, L. Losano and J.M.C. Malbouisson, Deformed defects, Phys. Rev. D 66 (2002) 101701 [hep-th/0209027] [SPIRES].ADSGoogle Scholar
  33. [33]
    Y.-X. Liu, J. Yang, Z.-H. Zhao, C.-E. Fu and Y.-S.Duan, Fermion Localization and Resonances on a de Sitter Thick Brane, Phys. Rev. D 80 (2009) 065019 [arXiv:0904.1785] [SPIRES].ADSGoogle Scholar
  34. [34]
    Z.-H. Zhao, Y.-X. Liu and H.-T. Li, Fermion localization on asymmetric two-field thick branes, Class. Quant. Grav. 27 (2010) 185001 [arXiv:0911.2572] [SPIRES].ADSMathSciNetCrossRefGoogle Scholar
  35. [35]
    J. Liang and Y.-S. Duan, Localization of matter and fermion resonances on double walls, Phys. Lett. B 681 (2009) 172 [SPIRES].ADSGoogle Scholar
  36. [36]
    Z.-H. Zhao, Y.-X. Liu, H.-T. Li and Y.-Q. Wang, Effects of the variation of mass on fermion localization and resonances on thick branes, Phys. Rev. D 82 (2010) 084030 [arXiv:1004.2181] [SPIRES].ADSGoogle Scholar
  37. [37]
    Z.-H. Zhao, Y.-X. Liu, Y.-Q. Wang and H.-T. Li, Effects of temperature on thick branes and the fermion (quasi-)localization, JHEP 06 (2011) 045 [arXiv:1102.4894] [SPIRES].ADSCrossRefGoogle Scholar
  38. [38]
    H.-T. Li, Y.-X. Liu, Z.-H. Zhao and H. Guo, Fermion Resonances on a Thick Brane with a Piecewise Warp Factor, Phys. Rev. D 83 (2011) 045006 [arXiv:1006.4240] [SPIRES].ADSGoogle Scholar
  39. [39]
    L.B. Castro, Fermion localization on two-field thick branes, Phys. Rev. D 83 (2011) 045002 [arXiv:1008.3665] [SPIRES].ADSGoogle Scholar
  40. [40]
    R.A.C. Correa, A. de Souza Dutra and M.B. Hott, Fermion localization on degenerate and critical branes, Class. Quant. Grav. 28 (2011) 155012 [arXiv:1011.1849] [SPIRES].ADSCrossRefGoogle Scholar
  41. [41]
    L.B. Castro and L.A. Meza, Fermion localization on branes with generalized dynamics, arXiv:1011.5872 [SPIRES].
  42. [42]
    A.E.R. Chumbes, A.E.O. Vasquez and M.B. Hott, Fermion localization on a split brane, Phys. Rev. D 83 (2011) 105010 [arXiv:1012.1480] [SPIRES].ADSGoogle Scholar
  43. [43]
    L.B. Castro and L.A. Meza, Effect of the variation of mass on fermion localization on thick branes, arXiv:1104.5402 [SPIRES].
  44. [44]
    C.A.S. Almeida, M.M. Ferreira, Jr., A.R. Gomes and R. Casana, Fermion localization and resonances on two-field thick branes, Phys. Rev. D 79 (2009) 125022 [arXiv:0901.3543] [SPIRES].ADSMathSciNetGoogle Scholar
  45. [45]
    W.T. Cruz, M.O. Tahim and C.A.S. Almeida, Gauge field localization on a dilatonic deformed brane, Phys. Lett. B 686 (2010) 259 [SPIRES].ADSGoogle Scholar
  46. [46]
    W.T. Cruz, M.O. Tahim and C.A.S. Almeida, Results in Kalb-Ramond field localization and resonances on deformed branes, Europhys. Lett. 88 (2009) 41001 [arXiv:0912.1029] [SPIRES].ADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2011

Authors and Affiliations

  • R. R. Landim
    • 1
  • G. Alencar
    • 2
  • M. O. Tahim
    • 2
  • R. N. Costa Filho
    • 1
  1. 1.Departamento de FísicaUniversidade Federal do CearáCearáBrazil
  2. 2.Universidade Estadual do Ceará Faculdade de EducaçãoCearáBrazil

Personalised recommendations