Breaking local baryon and lepton number at the TeV scale

  • Pavel Fileviez PérezEmail author
  • Mark B. Wise


Simple models are proposed where the baryon and lepton number are gauged and spontaneously broken near the weak scale. The models use a fourth generation that is vector-like with respect to the strong, weak and electromagnetic interactions to cancel anomalies. One does not need large Yukawa couplings to be consistent with the experimental limits on fourth generation quark masses and hence the models are free of coupling constants with Landau poles near the weak scale. We discuss the main features of simple non-supersymmetric and supersymmetric models. In these models the light neutrino masses are generated through the seesaw mechanism and proton decay is forbidden even though B and L are broken near the weak scale. For some values of the parameters in these models baryon and/or lepton number violation can be observed at the Large Hadron Collider.


Beyond Standard Model Supersymmetric Standard Model 


  1. [1]
    S.R. Elliott and P. Vogel, Double beta decay, Ann. Rev. Nucl. Part. Sci. 52 (2002) 115 [hep-ph/0202264] [SPIRES].CrossRefADSGoogle Scholar
  2. [2]
    P. Nath and P. Fileviez Perez, Proton stability in grand unified theories, in strings and in branes, Phys. Rept. 441 (2007) 191 [hep-ph/0601023] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  3. [3]
    P. Fileviez Perez and M.B. Wise, Baryon and lepton number as local gauge symmetries, Phys. Rev. D 82 (2010) 011901 [Erratum ibid. D 82 (2010) 079901] [arXiv:1002.1754] [SPIRES].ADSGoogle Scholar
  4. [4]
    T.R. Dulaney, P. Fileviez Perez and M.B. Wise, Dark matter, baryon asymmetry and spontaneous B and L breaking, Phys. Rev. D 83 (2011) 023520 [arXiv:1005.0617] [SPIRES].ADSGoogle Scholar
  5. [5]
    P. Fileviez Perez and M.B. Wise, Low energy supersymmetry with baryon and lepton number gauged, arXiv:1105.3190 [SPIRES].
  6. [6]
    P. Ko and Y. Omura, Supersymmetric U(1)B × U(1)L model with leptophilic and leptophobic cold dark matters, Phys. Lett. B 701 (2011) 363 [arXiv:1012.4679] [SPIRES].ADSGoogle Scholar
  7. [7]
    R. Foot, G.C. Joshi and H. Lew, Gauged baryon and lepton numbers, Phys. Rev. D 40 (1989) 2487.ADSGoogle Scholar
  8. [8]
    C.D. Carone and H. Murayama, Realistic models with a light U(1) gauge boson coupled to baryon number, Phys. Rev. D 52 (1995) 484 [hep-ph/9501220] [SPIRES].ADSGoogle Scholar
  9. [9]
    P. Minkowski, μ → eγ at a rate of one out of 1-billion muon decays?, Phys. Lett. B 67 (1977) 421 [SPIRES].ADSGoogle Scholar
  10. [10]
    T. Yanagida, Horizontal gauge symmetry and masses of neutrinos, in the proceedings of the Workshop on the unified theory and the baryon number in the universe, February 13–14, Tsukuba, Japan (1979).Google Scholar
  11. [11]
    M. Gell-Mann, P. Ramond and R. Slansky, Complex spinors and unified theories, in Supergravity, P. van Nieuwenhuizen et al. eds., North-Holland, Amsterdam The Netherlands (1979).Google Scholar
  12. [12]
    S.L. Glashow, The future of elementary particle physics, in Quarks and leptons, M. Lévy et al.eds., Plenum Press, U.S.A. (1980).Google Scholar
  13. [13]
    R.N. Mohapatra and G. Senjanović, Neutrino mass and spontaneous parity nonconservation, Phys. Rev. Lett. 44 (1980) 912 [SPIRES].CrossRefADSGoogle Scholar
  14. [14]
    M.R. Buckley, D. Hooper, J. Kopp and E. Neil, Light Z′ bosons at the Tevatron, Phys. Rev. D 83 (2011) 115013 [arXiv:1103.6035] [SPIRES].ADSGoogle Scholar
  15. [15]
    M. Buckley, P. Fileviez Perez, D. Hooper and E. Neil, Dark forces at the Tevatron, Phys. Lett. B 702 (2011) 256 [arXiv:1104.3145] [SPIRES].ADSGoogle Scholar
  16. [16]
    F. Yu, AZ′ model for the CDF dijet anomaly, Phys. Rev. D 83 (2011) 094028 [arXiv:1104.0243] [SPIRES].ADSGoogle Scholar
  17. [17]
    K. Cheung and J. Song, Baryonic Z′ explanation for the CDF Wjj excess, Phys. Rev. Lett. 106 (2011) 211803 [arXiv:1104.1375] [SPIRES].CrossRefADSGoogle Scholar
  18. [18]
    P. Ko, Y. Omura and C. Yu, Dijet resonance from leptophobic Z′ and light baryonic cold dark matter, arXiv:1104.4066 [SPIRES].
  19. [19]
    J.L. Hewett and T.G. Rizzo, Dissectingthe Wjj anomaly:diagnostictestsofaleptophobic Z′, arXiv:1106.0294 [SPIRES].
  20. [20]
    H.-J. He, N. Polonsky and S.-f. Su, Extra families, Higgs spectrum and oblique corrections, Phys. Rev. D 64 (2001) 053004 [hep-ph/0102144] [SPIRES].ADSGoogle Scholar
  21. [21]
    J. Erler and P. Langacker, Precision constraints on extra fermion generations, Phys. Rev. Lett. 105 (2010) 031801 [arXiv:1003.3211] [SPIRES].CrossRefADSGoogle Scholar
  22. [22]
    O. Eberhardt, A. Lenz and J. Rohrwild, Less space for a new family of fermions, Phys. Rev. D 82 (2010) 095006 [arXiv:1005.3505] [SPIRES].ADSGoogle Scholar
  23. [23]
    M. Bobrowski, A. Lenz, J. Riedl and J. Rohrwild, How much space is left for a new family of fermions?, Phys. Rev. D 79 (2009) 113006 [arXiv:0902.4883] [SPIRES].ADSGoogle Scholar
  24. [24]
    S. Dawson and P. Jaiswal, Four generations, Higgs physics and the MSSM, Phys. Rev. D 82 (2010) 073017 [arXiv:1009.1099] [SPIRES].ADSGoogle Scholar
  25. [25]
    G.D. Kribs, T. Plehn, M. Spannowsky and T.M.P. Tait, Four generations and Higgs physics, Phys. Rev. D 76 (2007) 075016 [arXiv:0706.3718] [SPIRES].ADSGoogle Scholar
  26. [26]
  27. [27]
    K. Huitu, S. Khalil, H. Okada and S.K. Rai, Signatures for right-handed neutrinos at the Large Hadron Collider, Phys. Rev. Lett. 101 (2008) 181802 [arXiv:0803.2799] [SPIRES].CrossRefADSGoogle Scholar
  28. [28]
    J.A. Aguilar-Saavedra, Heavy lepton pair production at LHC: model discrimination with multi-lepton signals, Nucl. Phys. B 828 (2010) 289 [arXiv:0905.2221] [SPIRES].CrossRefADSGoogle Scholar
  29. [29]
    P. Fileviez Perez, T. Han and T. Li, Testability of type I seesaw at the CERN LHC: revealing the existence of the B-L symmetry, Phys. Rev. D 80 (2009) 073015 [arXiv:0907.4186] [SPIRES].ADSGoogle Scholar
  30. [30]
    J.L. Goity and M. Sher, Bounds on delta B = 1 couplings in the supersymmetric standard model, Phys. Lett. B 346 (1995) 69 [Erratum ibid. B 385 (1996) 500] [hep-ph/9412208] [SPIRES].ADSGoogle Scholar
  31. [31]
    M.D. Litos, A search for dinucleon decay into kaons using the SK water cherenkov detector, Ph.D. Thesis, Boston University, Boston, U.S.A. (2010).Google Scholar
  32. [32]
    J.M. Butterworth, J.R. Ellis, A.R. Raklev and G.P. Salam, Discovering baryon-number violating neutralino decays at the LHC, Phys. Rev. Lett. 103 (2009) 241803 [arXiv:0906.0728] [SPIRES].CrossRefADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2011

Authors and Affiliations

  1. 1.Phenomenology InstituteUniversity of Wisconsin-MadisonMadisonU.S.A.
  2. 2.California Institute of TechnologyPasadenaU.S.A.

Personalised recommendations