Effective dark matter model: relic density, CDMS II, Fermi LAT and LHC

  • Hao Zhang
  • Qing-Hong Cao
  • Chuan-Ren Chen
  • Chong Sheng LiEmail author


The Cryogenic Dark Matter Search recently announced the observation of two signal events with a 77% confidence level. Although statistically inconclusive, it is nevertheless suggestive. In this work we present a model-independent analysis on the implication of direct and indirect searches for the dark matter using effective operator approach. Assuming that the interactions between (scalar, fermion or vector) dark matter and the standard model are mediated by unknown new physics at the scale Λ, we examine various dimension-6 tree-level induced operators and constrain them using the current experimental data, including the WMAP data of the relic abundance, CDMS II direct detection of the spin-independent scattering, and indirect detection data (Fermi LAT cosmic gamma-ray). Finally, the LHC search is also explored.


Beyond Standard Model Cosmology of Theories beyond the SM 


  1. [1]
    A.W. Strong et al., Gamma-ray continuum emission from the inner galactic region as observed with INTEGRAL/SPI, Astron. Astrophys. 444 (2005) 495 [astro-ph/0509290] [SPIRES].CrossRefADSGoogle Scholar
  2. [2]
    J. Chang et al., An excess of cosmic ray electrons at energies of 300800 GeV, Nature 456 (2008) 362 [SPIRES].CrossRefADSGoogle Scholar
  3. [3]
    PAMELA collaboration, O. Adriani et al., An anomalous positron abundance in cosmic rays with energies 1.5100 GeV, Nature 458 (2009) 607 [arXiv:0810.4995] [SPIRES].CrossRefADSGoogle Scholar
  4. [4]
    Fermi LAT collaboration, A.A. Abdo et al., Measurement of the cosmic ray e + plus e spectrum from 20 GeV to 1 TeV with the Fermi Large Area Telescope, Phys. Rev. Lett. 102 (2009) 181101 [arXiv:0905.0025] [SPIRES].CrossRefADSGoogle Scholar
  5. [5]
    CDMS-II collaboration, Z. Ahmed et al., Dark matter search results from the CDMS II experiment, Science 327 (2010) 1619 [arXiv:0912.3592] [SPIRES].CrossRefADSGoogle Scholar
  6. [6]
    M. Kadastik, K. Kannike, A. Racioppi and M. Raidal, EWSB from the soft portal into dark matter and prediction for direct detection, Phys. Rev. Lett. 104 (2010) 201301 [arXiv:0912.2729] [SPIRES].CrossRefADSGoogle Scholar
  7. [7]
    M. Kadastik, K. Kannike, A. Racioppi and M. Raidal, Implications of the CDMS result on dark matter and LHC physics, Phys. Lett. B 694 (2010) 242 [arXiv:0912.3797] [SPIRES].ADSGoogle Scholar
  8. [8]
    A. Bottino, F. Donato, N. Fornengo and S. Scopel, Relic neutralinos and the two dark matter candidate events of the CDMS II experiment, Phys. Rev. D 81 (2010) 107302 [arXiv:0912.4025] [SPIRES].ADSGoogle Scholar
  9. [9]
    D. Feldman, Z. Liu and P. Nath, Connecting the direct detection of dark matter with observation of sparticles at the LHC, Phys. Rev. D 81 (2010) 095009 [arXiv:0912.4217] [SPIRES].ADSGoogle Scholar
  10. [10]
    M. Ibe and T.T. Yanagida, Neutralino dark matter in gauge mediation in light of CDMS-II, Phys. Rev. D 81 (2010) 035017 [arXiv:0912.4221] [SPIRES].ADSGoogle Scholar
  11. [11]
    J. Kopp, T. Schwetz and J. Zupan, Global interpretation of direct dark matter searches after CDMS-II results, JCAP 02 (2010) 014 [arXiv:0912.4264] [SPIRES].ADSGoogle Scholar
  12. [12]
    R. Allahverdi, B. Dutta and Y. Santoso, Models of supersymmetric dark matter and their predictions in light of CDMS, Phys. Lett. B 687 (2010) 225 [arXiv:0912.4329] [SPIRES].ADSGoogle Scholar
  13. [13]
    M. Endo, S. Shirai and K. Yonekura, Phenomenological aspects of gauge mediation with sequestered supersymmetry breaking in light of dark matter detection, JHEP 03 (2010) 052 [arXiv:0912.4484] [SPIRES].CrossRefADSGoogle Scholar
  14. [14]
    Q.-H. Cao, I. Low and G. Shaughnessy, From Pamela to CDMS and back, Phys. Lett. B 691 (2010) 73 [arXiv:0912.4510] [SPIRES].ADSGoogle Scholar
  15. [15]
    M. Holmes and B.D. Nelson, Non-universal gaugino masses, CDMS and the LHC, Phys. Rev. D 81 (2010) 055002 [arXiv:0912.4507] [SPIRES].ADSGoogle Scholar
  16. [16]
    G. Jungman, M. Kamionkowski and K. Griest, Supersymmetric dark matter, Phys. Rept. 267 (1996) 195 [hep-ph/9506380] [SPIRES].CrossRefADSGoogle Scholar
  17. [17]
    G. Bertone, D. Hooper and J. Silk, Particle dark matter: evidence, candidates and constraints, Phys. Rept. 405 (2005) 279 [hep-ph/0404175] [SPIRES].CrossRefADSGoogle Scholar
  18. [18]
    G. Servant and T.M.P. Tait, Is the lightest Kaluza-Klein particle a viable dark matter candidate?, Nucl. Phys. B 650 (2003) 391 [hep-ph/0206071] [SPIRES].CrossRefADSGoogle Scholar
  19. [19]
    H.-C. Cheng, J.L. Feng and K.T. Matchev, Kaluza-Klein dark matter, Phys. Rev. Lett. 89 (2002) 211301 [hep-ph/0207125] [SPIRES].CrossRefADSGoogle Scholar
  20. [20]
    G. Servant and T.M.P. Tait, Elastic scattering and direct detection of Kaluza-Klein dark matter, New J. Phys. 4 (2002) 99 [hep-ph/0209262] [SPIRES].CrossRefADSGoogle Scholar
  21. [21]
    H.-C. Cheng and I. Low, TeV symmetry and the little hierarchy problem, JHEP 09 (2003) 051 [hep-ph/0308199] [SPIRES].CrossRefADSGoogle Scholar
  22. [22]
    H.-C. Cheng and I. Low, Little hierarchy, little Higgses and a little symmetry, JHEP 08 (2004) 061 [hep-ph/0405243] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  23. [23]
    A. Birkedal, A. Noble, M. Perelstein and A. Spray, Little Higgs dark matter, Phys. Rev. D 74 (2006) 035002 [hep-ph/0603077] [SPIRES].ADSGoogle Scholar
  24. [24]
    V. Silveira and A. Zee, Scalar phantoms, Phys. Lett. B 161 (1985) 136 [SPIRES].ADSMathSciNetGoogle Scholar
  25. [25]
    J. McDonald, Gauge singlet scalars as cold dark matter, Phys. Rev. D 50 (1994) 3637 [hep-ph/0702143] [SPIRES].ADSGoogle Scholar
  26. [26]
    V. Barger, P. Langacker, H.-S. Lee and G. Shaughnessy, Higgs sector in extensions of the MSSM, Phys. Rev. D 73 (2006) 115010 [hep-ph/0603247] [SPIRES].ADSGoogle Scholar
  27. [27]
    R. Barbieri, L.J. Hall and V.S. Rychkov, Improved naturalness with a heavy Higgs: an alternative road to LHC physics, Phys. Rev. D 74 (2006) 015007 [hep-ph/0603188] [SPIRES].ADSGoogle Scholar
  28. [28]
    L. Lopez Honorez, E. Nezri, J.F. Oliver and M.H.G. Tytgat, The inert doublet model: an archetype for dark matter, JCAP 02 (2007) 028 [hep-ph/0612275] [SPIRES].ADSGoogle Scholar
  29. [29]
    M. Gustafsson, E. Lundstrom, L. Bergstrom and J. Edsjo, Significant gamma lines from inert Higgs dark matter, Phys. Rev. Lett. 99 (2007) 041301 [astro-ph/0703512] [SPIRES].CrossRefADSGoogle Scholar
  30. [30]
    V. Barger, P. Langacker, M. McCaskey, M.J. Ramsey-Musolf and G. Shaughnessy, LHC phenomenology of an extended standard model with a real scalar singlet, Phys. Rev. D 77 (2008) 035005 [arXiv:0706.4311] [SPIRES].ADSGoogle Scholar
  31. [31]
    Q.-H. Cao, E. Ma and G. Rajasekaran, Observing the dark scalar doublet and its impact on the standard-model Higgs boson at colliders, Phys. Rev. D 76 (2007) 095011 [arXiv:0708.2939] [SPIRES].ADSGoogle Scholar
  32. [32]
    Q.-H. Cao, E. Ma and G. Shaughnessy, Dark matter: the leptonic connection, Phys. Lett. B 673 (2009) 152 [arXiv:0901.1334] [SPIRES].ADSGoogle Scholar
  33. [33]
    M. Kadastik, K. Kannike and M. Raidal, Less-dimensions and matter parity as the origin of dark matter, Phys. Rev. D 81 (2010) 015002 [arXiv:0903.2475] [SPIRES].ADSGoogle Scholar
  34. [34]
    M. Kadastik, K. Kannike and M. Raidal, Dark matter as the signal of grand unification, Phys. Rev. D 80 (2009) 085020 [Erratum ibid. D 81 (2010) 029903] [arXiv:0907.1894] [SPIRES].ADSGoogle Scholar
  35. [35]
    H. Zhang, C.S. Li, Q.-H. Cao and Z. Li, A dark matter model with non-Abelian gauge symmetry, Phys. Rev. D 82 (2010) 075003 [arXiv:0910.2831] [SPIRES].ADSGoogle Scholar
  36. [36]
    F. Wilczek, Anticipating a new golden age, Int. J. Mod. Phys. A 23 (2008) 1791 [Eur. Phys. J. C 59 (2009) 185] [arXiv:0708.4236] [SPIRES].ADSMathSciNetGoogle Scholar
  37. [37]
    V. Barger, W.-Y. Keung and G. Shaughnessy, Spin dependence of dark matter scattering, Phys. Rev. D 78 (2008) 056007 [arXiv:0806.1962] [SPIRES].ADSGoogle Scholar
  38. [38]
    M. Beltrán, D. Hooper, E.W. Kolb and Z.C. Krusberg, Deducing the nature of dark matter from direct and indirect detection experiments in the absence of collider signatures of new physics, Phys. Rev. D 80 (2009) 043509 [arXiv:0808.3384] [SPIRES].ADSGoogle Scholar
  39. [39]
    W. Shepherd, T.M.P. Tait and G. Zaharijas, WIMPonium, Phys. Rev. D 79 (2009) 055022 [arXiv:0901.2125] [SPIRES].ADSGoogle Scholar
  40. [40]
    J. Goodman et al., Constraints on dark matter from colliders, Phys. Rev. D 82 (2010) 116010 [arXiv:1008.1783] [SPIRES].ADSGoogle Scholar
  41. [41]
    J. Goodman et al., Gamma ray line constraints on effective theories of dark matter, Nucl. Phys. B 844 (2011) 55 [arXiv:1009.0008] [SPIRES].CrossRefADSGoogle Scholar
  42. [42]
    J. Goodman et al., Constraints on light Majorana dark matter from colliders, Phys. Lett. B 695 (2011) 185 [arXiv:1005.1286] [SPIRES].ADSGoogle Scholar
  43. [43]
    P. Agrawal, Z. Chacko, C. Kilic and R.K. Mishra, Direct detection constraints on dark matter event rates in neutrino telescopes and collider implications, arXiv:1003.5905 [SPIRES].
  44. [44]
    P. Agrawal, Z. Chacko, C. Kilic and R.K. Mishra, A classification of dark matter candidates with primarily spin-dependent interactions with matter, arXiv:1003.1912 [SPIRES].
  45. [45]
    Y. Bai, P.J. Fox and R. Harnik, The Tevatron at the frontier of dark matter direct detection, JHEP 12 (2010) 048 [arXiv:1005.3797] [SPIRES].CrossRefADSGoogle Scholar
  46. [46]
    J. Fan, M. Reece and L.-T. Wang, Non-relativistic effective theory of dark matter direct detection, JCAP 11 (2010) 042 [arXiv:1008.1591] [SPIRES].ADSGoogle Scholar
  47. [47]
    W. Buchmüller and D. Wyler, Effective Lagrangian analysis of new interactions and flavor conservation, Nucl. Phys. B 268 (1986) 621 [SPIRES].CrossRefADSGoogle Scholar
  48. [48]
    C. Arzt, M.B. Einhorn and J. Wudka, Patterns of deviation from the standard model, Nucl. Phys. B 433 (1995) 41 [hep-ph/9405214] [SPIRES].CrossRefADSGoogle Scholar
  49. [49]
    Particle Data Group collaboration, C. Amsler et al., Review of particle physics, Phys. Lett. B 667 (2008) 1 [SPIRES].ADSGoogle Scholar
  50. [50]
    L.M. Krauss and F. Wilczek, Discrete gauge symmetry in continuum theories, Phys. Rev. Lett. 62 (1989) 1221 [SPIRES].CrossRefADSGoogle Scholar
  51. [51]
    P.F. Smith and J.R.J. Bennett, A search for heavy stable particles, Nucl. Phys. B 149 (1979) 525 [SPIRES].CrossRefADSGoogle Scholar
  52. [52]
    P.F. Smith et al., A search for anomalous hydrogen in enriched D 2 O, using a time-of-flight spectrometer, Nucl. Phys. B 206 (1982) 333 [SPIRES].CrossRefADSGoogle Scholar
  53. [53]
    P. Verkerk et al., Search for superheavy hydrogen in sea water, Phys. Rev. Lett. 68 (1992) 1116 [SPIRES].CrossRefADSGoogle Scholar
  54. [54]
    E. Kolb and M. Turner, The early universe, Frontiers in Physics, Westview Press, U.S.A. (1994).Google Scholar
  55. [55]
    WMAP collaboration, D.N. Spergel et al., Wilkinson Microwave Anisotropy Probe (WMAP) three year results: implications for cosmology, Astrophys. J. Suppl. 170 (2007) 377 [astro-ph/0603449] [SPIRES].CrossRefADSGoogle Scholar
  56. [56]
    B.C. Allanach, G. Bélanger, F. Boudjema and A. Pukhov, Requirements on collider data to match the precision of WMAP on supersymmetric dark matter, JHEP 12 (2004) 020 [hep-ph/0410091] [SPIRES].CrossRefADSGoogle Scholar
  57. [57]
    M.M. Nojiri, G. Polesello and D.R. Tovey, Constraining dark matter in the MSSM at the LHC, JHEP 03 (2006) 063 [hep-ph/0512204] [SPIRES].CrossRefADSGoogle Scholar
  58. [58]
    E.A. Baltz, M. Battaglia, M.E. Peskin and T. Wizansky, Determination of dark matter properties at high-energy colliders, Phys. Rev. D 74 (2006) 103521 [hep-ph/0602187] [SPIRES].ADSGoogle Scholar
  59. [59]
    Y.G. Kim and K.Y. Lee, The minimal model of fermionic dark matter, Phys. Rev. D 75 (2007) 115012 [hep-ph/0611069] [SPIRES].ADSGoogle Scholar
  60. [60]
    Q.-H. Cao, E. Ma, J. Wudka and C.P. Yuan, Multipartite dark matter, arXiv:0711.3881 [SPIRES].
  61. [61]
    XENON collaboration, J. Angle et al., First results from the XENON10 dark matter experiment at the Gran Sasso national laboratory, Phys. Rev. Lett. 100 (2008) 021303 [arXiv:0706.0039] [SPIRES].CrossRefADSGoogle Scholar
  62. [62]
    CDMS collaboration, D.S. Akerib et al., Limits on spin-independent WIMP nucleon interactions from the two-tower run of the Cryogenic Dark Matter Search, Phys. Rev. Lett. 96 (2006) 011302 [astro-ph/0509259] [SPIRES].CrossRefADSGoogle Scholar
  63. [63]
    D.S. Akerib et al., The SuperCDMS proposal for dark matter detection, Nucl. Instrum. Meth. A 559 (2006) 411 [SPIRES].ADSGoogle Scholar
  64. [64]
    GLAST collaboration, A. Morselli, A. Lionetto, A. Cesarini, F. Fucito and P. Ullio, Search for dark matter with GLAST, Nucl. Phys. Proc. Suppl. 113 (2002) 213 [astro-ph/0211327] [SPIRES].CrossRefADSGoogle Scholar
  65. [65]
    J.F. Navarro, C.S. Frenk and S.D.M. White, The structure of cold dark matter halos, Astrophys. J. 462 (1996) 563 [astro-ph/9508025] [SPIRES].CrossRefADSGoogle Scholar
  66. [66]
    J.F. Navarro, C.S. Frenk and S.D.M. White, A universal density profile from hierarchical clustering, Astrophys. J. 490 (1997) 493 [astro-ph/9611107] [SPIRES].CrossRefADSGoogle Scholar
  67. [67]
    G. Jóhannessonth, A first look at the GeV excess with Fermi LAT, talk at the 44th rencontres de Moriond,, La Thuile Italy February 1–8 2009.
  68. [68]
    L. Reyes, Early observations of gamma-ray blazars with Fermi LAT, talk at SnowPAC 2009: Snowbird Workshop on Particle Astrophysics, Astronomy and Cosmology, February 1–9 2009.Google Scholar
  69. [69]
    V. Barger, Y. Gao, W.Y. Keung, D. Marfatia and G. Shaughnessy, Dark matter and pulsar signals for Fermi LAT, PAMELA, ATIC, HESS and WMAP data, Phys. Lett. B 678 (2009) 283 [arXiv:0904.2001] [SPIRES].ADSGoogle Scholar
  70. [70]
    H.F.W. Sadrozinski, GLAST: a gamma-ray large area space telescope, Nucl. Instrum. Meth. A 466 (2001) 292 [SPIRES].ADSGoogle Scholar
  71. [71]
    MAGIC Telescope collaboration, D. Petry, The MAGIC telescope — prospects for GRB research, Astron. Astrophys. Suppl. Ser 138 (1999) 601 [astro-ph/9904178] [SPIRES].CrossRefADSGoogle Scholar
  72. [72]
    C. Baixeras et al., Design studies for ECO, the european gamma-ray observatory, astro-ph/0403180 [SPIRES].
  73. [73]
    M.E. Peskin, Dark matter and particle physics, J. Phys. Soc. Jap. 76 (2007) 111017 [arXiv:0707.1536] [SPIRES].CrossRefADSGoogle Scholar
  74. [74]
    D0 collaboration, V.M. Abazov et al., Search for large extra dimensions in the monojet + missing E T channel at D0, Phys. Rev. Lett. 90 (2003) 251802 [hep-ex/0302014] [SPIRES].CrossRefADSGoogle Scholar
  75. [75]
    CDF collaboration, T. Aaltonen et al., Search for large extra dimensions in final states containing one photon or jet and large missing transverse energy produced in \( p\bar{p} \) collisions at \( \sqrt {s} = 1.96 \) TeV, Phys. Rev. Lett. 101 (2008) 181602 [arXiv:0807.3132] [SPIRES].CrossRefADSGoogle Scholar
  76. [76]
    G. Bertone, C.B. Jackson, G. Shaughnessy, T.M.P. Tait and A. Vallinotto, The WIMP forest: indirect detection of a chiral square, Phys. Rev. D 80 (2009) 023512 [arXiv:0904.1442] [SPIRES].ADSGoogle Scholar
  77. [77]
    C.B. Jackson, G. Servant, G. Shaughnessy, T.M.P. Tait and M. Taoso, Higgs in space!, JCAP 04 (2010) 004 [arXiv:0912.0004] [SPIRES].ADSGoogle Scholar
  78. [78]
    G.K. Mallot, The spin structure of the nucleon, hep-ex/9912040 [SPIRES].
  79. [79]
    A. Bottino, F. Donato, N. Fornengo and S. Scopel, Size of the neutralino nucleon cross-section in the light of a new determination of the pion nucleon sigma term, Astropart. Phys. 18 (2002) 205 [hep-ph/0111229] [SPIRES].CrossRefADSGoogle Scholar
  80. [80]
    J.R. Ellis, K.A. Olive, Y. Santoso and V.C. Spanos, Update on the direct detection of supersymmetric dark matter, Phys. Rev. D 71 (2005) 095007 [hep-ph/0502001] [SPIRES].ADSGoogle Scholar
  81. [81]
    B. Fields and S. Sarkar, Big-bang nucleosynthesis (particle data group mini-review), J. Phys. G 33 (2006) 1 [astro-ph/0601514] [SPIRES].ADSGoogle Scholar
  82. [82]
    L. Bergstrom, P. Ullio and J.H. Buckley, Observability of gamma rays from dark matter neutralino annihilations in the Milky Way halo, Astropart. Phys. 9 (1998) 137 [astro-ph/9712318] [SPIRES].CrossRefADSGoogle Scholar
  83. [83]
    B. Moore et al., Dark matter substructure within galactic halos, Astrophys. J. 524 (1999) L19 [SPIRES].CrossRefADSGoogle Scholar
  84. [84]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [SPIRES].CrossRefADSGoogle Scholar
  85. [85]
    J.L. Feng, K.T. Matchev and F. Wilczek, Prospects for indirect detection of neutralino dark matter, Phys. Rev. D 63 (2001) 045024 [astro-ph/0008115] [SPIRES].ADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2011

Authors and Affiliations

  • Hao Zhang
    • 1
    • 2
  • Qing-Hong Cao
    • 1
    • 2
    • 3
  • Chuan-Ren Chen
    • 4
  • Chong Sheng Li
    • 1
    Email author
  1. 1.Department of Physics and State Key Laboratory of Nuclear Physics and TechnologyPeking UniversityBeijingChina
  2. 2.Enrico Fermi InstituteUniversity of ChicagoChicagoU.S.A.
  3. 3.HEP DivisionArgonne National LaboratoryArgonneU.S.A.
  4. 4.Institute for the Physics and Mathematics of the UniverseThe University of TokyoChibaJapan

Personalised recommendations