Beyond the standard seesaw: neutrino masses from Kähler operators and broken supersymmetry

  • Andrea BrignoleEmail author
  • Filipe R. Joaquim
  • Anna Rossi
Open Access


We investigate supersymmetric scenarios in which neutrino masses are generated by effective d = 6 operators in the Kähler potential, rather than by the standard d = 5 superpotential operator. First, we discuss some general features of such effective operators, also including SUSY-breaking insertions, and compute the relevant renormalization group equations. Contributions to neutrino masses arise at low energy both at the tree level and through finite threshold corrections. In the second part we present simple explicit realizations in which those Kähler operators arise by integrating out heavy SU(2) W triplets, as in the type II seesaw. Distinct scenarios emerge, depending on the mechanism and the scale of SUSY-breaking mediation. In particular, we propose an appealing and economical picture in which the heavy seesaw mediators are also messengers of SUSY breaking. In this case, strong correlations exist among neutrino parameters, sparticle and Higgs masses, as well as lepton flavour violating processes. Hence, this scenario can be tested at high-energy colliders, such as the LHC, and at lower energy experiments that measure neutrino parameters or search for rare lepton decays.


Supersymmetry Breaking Neutrino Physics Supersymmetric Standard Model Rare Decays 


  1. [1]
    B.T. Cleveland et al., Measurement of the solar electron neutrino flux with the Homestake chlorine detector, Astrophys. J. 496 (1998) 505 [SPIRES].ADSGoogle Scholar
  2. [2]
    Super-Kamkiokande collaboration, J. Hosaka et al., Solar neutrino measurements in Super-Kamiokande-I, Phys. Rev. D 73 (2006) 112001 [hep-ex/0508053] [SPIRES].ADSGoogle Scholar
  3. [3]
    Super-Kamkiokande collaboration, Y. Ashie et al., A measurement of atmospheric neutrino oscillation parameters by Super-Kamiokande I, Phys. Rev. D 71 (2005) 112005 [hep-ex/0501064] [SPIRES].ADSGoogle Scholar
  4. [4]
    SNO collaboration, B. Aharmim et al., Electron energy spectra, fluxes and day-night asymmetries of B-8 solar neutrinos from the 391-day salt phase SNO data set, Phys. Rev. C 72 (2005) 055502 [nucl-ex/0502021] [SPIRES].ADSGoogle Scholar
  5. [5]
    SAGE collaboration, J.N. Abdurashitov et al., Measurement of the solar neutrino capture rate with gallium metal. III: Results for the 2002–2007 data-taking period, Phys. Rev. C 80 (2009) 015807 [arXiv:0901.2200] [SPIRES].ADSGoogle Scholar
  6. [6]
    K2K collaboration, M.H. Ahn et al., Measurement of neutrino oscillation by the K2K experiment, Phys. Rev. D 74 (2006) 072003 [hep-ex/0606032] [SPIRES].ADSGoogle Scholar
  7. [7]
    MINOS collaboration, P. Adamson et al., Measurement of neutrino oscillations with the MINOS detectors in the NuMI beam, Phys. Rev. Lett. 101 (2008) 131802 [arXiv:0806.2237] [SPIRES].ADSGoogle Scholar
  8. [8]
    KamLAND collaboration, S. Abe et al., Precision measurement of neutrino oscillation parameters with KamLAND, Phys. Rev. Lett. 100 (2008) 221803 [arXiv:0801.4589] [SPIRES]. ADSGoogle Scholar
  9. [9]
    CHOOZ collaboration, M. Apollonio et al., Limits on neutrino oscillations from the CHOOZ experiment, Phys. Lett. B 466 (1999) 415 [hep-ex/9907037] [SPIRES].ADSGoogle Scholar
  10. [10]
    The MINOS collaboration, P. Adamson et al., New constraints on muon-neutrino to electron-neutrino transitions in MINOS, arXiv:1006.0996 [SPIRES].
  11. [11]
    T. Schwetz, M.A. Tortola and J.W.F. Valle, Three-flavour neutrino oscillation update, New J. Phys. 10 (2008) 113011 [arXiv:0808.2016] [SPIRES].ADSGoogle Scholar
  12. [12]
    G.L. Fogli, E. Lisi, A. Marrone, A. Palazzo and A.M. Rotunno, SNO, KamLAND and neutrino oscillations: θ 13, arXiv:0905.3549 [SPIRES].
  13. [13]
    M.C. Gonzalez-Garcia, M. Maltoni and J. Salvado, Updated global fit to three neutrino mixing: status of the hints of θ 13 > 0, JHEP 04 (2010) 056 [arXiv:1001.4524] [SPIRES].ADSGoogle Scholar
  14. [14]
    S. Weinberg, Baryon and lepton nonconserving processes, Phys. Rev. Lett. 43 (1979) 1566 [SPIRES].ADSGoogle Scholar
  15. [15]
    P. Minkowski, μeΓ at a rate of one out of 1-billion muon decays?, Phys. Lett. B 67 (1977) 421 [SPIRES].ADSGoogle Scholar
  16. [16]
    M. Gell-Mann, P. Ramond and R. Slansky, in Supergravity, P. Van Nieuwenhuizen and D. Freedman eds., North-Holland, Amsterdam (1979) pg. 315.Google Scholar
  17. [17]
    T. Yanagida, Horizontal gauge symmetry and masses of neutrinos, in Proceedings of the Workshop on the Unified Theory and the Baryon Number in the Universe, O. Sawada and A. Sugamoto eds., KEK, Tsukuba (1979) pg. 95.Google Scholar
  18. [18]
    S.L. Glashow, The future of elementary particle physics, in Quarks and Leptons, Cargese France (1979), M. Levy et al. eds., Plenum, New York, U.S.A. (1980) pg. 687.Google Scholar
  19. [19]
    R.N. Mohapatra and G. Senjanović, Neutrino mass and spontaneous parity nonconservation, Phys. Rev. Lett. 44 (1980) 912 [SPIRES].ADSGoogle Scholar
  20. [20]
    J. Schechter and J.W.F. Valle, Neutrino masses in SU(2) × U(1) theories, Phys. Rev. D 22 (1980) 2227 [SPIRES].ADSGoogle Scholar
  21. [21]
    M. Magg and C. Wetterich, Neutrino mass problem and gauge hierarchy, Phys. Lett. B 94 (1980) 61 [SPIRES].ADSGoogle Scholar
  22. [22]
    G. Lazarides, Q. Shafi and C. Wetterich, Proton lifetime and fermion masses in an SO(10) model, Nucl. Phys. B 181 (1981) 287 [SPIRES].ADSGoogle Scholar
  23. [23]
    R.N. Mohapatra and G. Senjanović, Neutrino masses and mixings in gauge models with spontaneous parity violation, Phys. Rev. D 23 (1981) 165 [SPIRES].ADSGoogle Scholar
  24. [24]
    E. Ma and U. Sarkar, Neutrino masses and leptogenesis with heavy Higgs triplets, Phys. Rev. Lett. 80 (1998) 5716 [hep-ph/9802445] [SPIRES].ADSGoogle Scholar
  25. [25]
    R. Foot, H. Lew, X.G. He and G.C. Joshi, Seesaw neutrino masses induced by a triplet of leptons, Z. Phys. C 44 (1989) 441 [SPIRES].Google Scholar
  26. [26]
    E. Ma, Pathways to naturally small neutrino masses, Phys. Rev. Lett. 81 (1998) 1171 [hep-ph/9805219] [SPIRES].ADSGoogle Scholar
  27. [27]
    R.N. Mohapatra and J.W.F. Valle, Neutrino mass and baryon-number nonconservation in superstring models, Phys. Rev. D 34 (1986) 1642 [SPIRES].ADSGoogle Scholar
  28. [28]
    M.C. Gonzalez-Garcia and J.W.F. Valle, Fast decaying neutrinos and observable flavor violation in a new class of majoron models, Phys. Lett. B 216 (1989) 360 [SPIRES].ADSGoogle Scholar
  29. [29]
    A. Zee, A theory of lepton number violation, neutrino majorana mass and oscillation, Phys. Lett. B 93 (1980) 389 [Erratum ibid. B95 (1980) 461] [SPIRES].ADSGoogle Scholar
  30. [30]
    K.S. Babu, Model of ’calculable’ majorana neutrino masses, Phys. Lett. B 203 (1988) 132 [SPIRES].ADSGoogle Scholar
  31. [31]
    K.S. Babu and C.N. Leung, Classification of effective neutrino mass operators, Nucl. Phys. B 619 (2001) 667 [hep-ph/0106054] [SPIRES].ADSGoogle Scholar
  32. [32]
    A. de Gouvêa and J. Jenkins, A survey of lepton number violation via effective operators, Phys. Rev. D 77 (2008) 013008 [arXiv:0708.1344] [SPIRES].ADSGoogle Scholar
  33. [33]
    K.S. Babu, S. Nandi and Z. Tavartkiladze, New mechanism for neutrino mass generation and triply charged higgs bosons at the LHC, Phys. Rev. D 80 (2009) 071702 [arXiv:0905.2710] [SPIRES].ADSGoogle Scholar
  34. [34]
    F. Bonnet, D. Hernandez, T. Ota and W. Winter, Neutrino masses from higher than D = 5 effective operators, JHEP 10 (2009) 076 [arXiv:0907.3143] [SPIRES].ADSGoogle Scholar
  35. [35]
    U. Ellwanger, C. Hugonie and A.M. Teixeira, The next-to-minimal supersymmetric standard model, arXiv:0910.1785 [SPIRES].
  36. [36]
    I. Gogoladze, N. Okada and Q. Shafi, NMSSM and seesaw physics at LHC, Phys. Lett. B 672 (2009) 235 [arXiv:0809.0703] [SPIRES].ADSGoogle Scholar
  37. [37]
    J.A. Casas, J.R. Espinosa and I. Navarro, New supersymmetric source of neutrino masses and mixings, Phys. Rev. Lett. 89 (2002) 161801 [hep-ph/0206276] [SPIRES].ADSGoogle Scholar
  38. [38]
    J.A. Casas, J.R. Espinosa and I. Navarro, Large mixing angles for neutrinos from infrared fixed points, JHEP 09 (2003) 048 [hep-ph/0306243] [SPIRES].ADSGoogle Scholar
  39. [39]
    A. Rossi, Supersymmetric seesaw without singlet neutrinos: Neutrino masses and lepton-flavour violation, Phys. Rev. D 66 (2002) 075003 [hep-ph/0207006] [SPIRES].ADSGoogle Scholar
  40. [40]
    F.R. Joaquim and A. Rossi, Gauge and Yukawa mediated supersymmetry breaking in the triplet seesaw scenario, Phys. Rev. Lett. 97 (2006) 181801 [hep-ph/0604083] [SPIRES].ADSGoogle Scholar
  41. [41]
    F.R. Joaquim and A. Rossi, Phenomenology of the triplet seesaw mechanism with gauge and Yukawa mediation of SUSY breaking, Nucl. Phys. B 765 (2007) 71 [hep-ph/0607298] [SPIRES].ADSGoogle Scholar
  42. [42]
    H.P. Nilles, Supersymmetry, supergravity and particle physics, Phys. Rept. 110 (1984) 1 [SPIRES].ADSGoogle Scholar
  43. [43]
    S.P. Martin, A supersymmetry primer, hep-ph/9709356 [SPIRES].
  44. [44]
    N. Polonsky and S. Su, More corrections to the Higgs mass in supersymmetry, Phys. Lett. B 508 (2001) 103 [hep-ph/0010113] [SPIRES].ADSGoogle Scholar
  45. [45]
    A. Brignole, J.A. Casas, J.R. Espinosa and I. Navarro, Low-scale supersymmetry breaking: Effective description, electroweak breaking and phenomenology, Nucl. Phys. B 666 (2003) 105 [hep-ph/0301121] [SPIRES].ADSGoogle Scholar
  46. [46]
    M. Dine, N. Seiberg and S. Thomas, Higgs physics as a window beyond the MSSM (BMSSM), Phys. Rev. D 76 (2007) 095004 [arXiv:0707.0005] [SPIRES].ADSGoogle Scholar
  47. [47]
    I. Antoniadis, E. Dudas, D.M. Ghilencea and P. Tziveloglou, MSSM with dimension-five operators (MSSM 5), Nucl. Phys. B 808 (2009) 155 [arXiv:0806.3778] [SPIRES].MathSciNetADSGoogle Scholar
  48. [48]
    I. Antoniadis, E. Dudas, D.M. Ghilencea and P. Tziveloglou, MSSM higgs with dimension-six operators, Nucl. Phys. B 831 (2010) 133 [arXiv:0910.1100] [SPIRES].MathSciNetADSGoogle Scholar
  49. [49]
    J.P. Derendinger and C.A. Savoy, Gaugino masses and a new mechanism for proton decay in supersymmetric theories, Phys. Lett. B 118 (1982) 347 [SPIRES].MathSciNetADSGoogle Scholar
  50. [50]
    N. Sakai, Proton decay in models with intermediate scale supersymmetry breaking, Phys. Lett. B 121 (1983) 130 [SPIRES].ADSGoogle Scholar
  51. [51]
    N. Sakai, Proton decay in locally supersymmetric gut, Nucl. Phys. B 238 (1984) 317 [SPIRES].ADSGoogle Scholar
  52. [52]
    Z. Berezhiani, F. Nesti and L. Pilo, Soft SUSY breaking contributions to proton decay, JHEP 10 (2006) 030 [hep-ph/0607303] [SPIRES].ADSGoogle Scholar
  53. [53]
    K. Benakli and A.Y. Smirnov, Neutrino-modulino mixing, Phys. Rev. Lett. 79 (1997) 4314 [hep-ph/9703465] [SPIRES].ADSGoogle Scholar
  54. [54]
    N. Arkani-Hamed, L.J. Hall, H. Murayama, D. Tucker-Smith and N. Weiner, Small neutrino masses from supersymmetry breaking, Phys. Rev. D 64 (2001) 115011 [hep-ph/0006312] [SPIRES].ADSGoogle Scholar
  55. [55]
    F. Borzumati and Y. Nomura, Low-scale see-saw mechanisms for light neutrinos, Phys. Rev. D 64 (2001) 053005 [hep-ph/0007018] [SPIRES].ADSGoogle Scholar
  56. [56]
    R.L. Arnowitt, B. Dutta and B. Hu, Yukawa textures, neutrino masses and Hořava-Witten M-theory, Nucl. Phys. B 682 (2004) 347 [hep-th/0309033] [SPIRES].MathSciNetADSGoogle Scholar
  57. [57]
    S. Abel, A. Dedes and K. Tamvakis, Naturally small Dirac neutrino masses in supergravity, Phys. Rev. D 71 (2005) 033003 [hep-ph/0402287] [SPIRES].ADSGoogle Scholar
  58. [58]
    J. March-Russell and S.M. West, A simple model of neutrino masses from supersymmetry breaking, Phys. Lett. B 593 (2004) 181 [hep-ph/0403067] [SPIRES].ADSGoogle Scholar
  59. [59]
    D.A. Demir, L.L. Everett and P. Langacker, Dirac neutrino masses from generalized supersymmetry breaking, Phys. Rev. Lett. 100 (2008) 091804 [arXiv:0712.1341] [SPIRES].ADSGoogle Scholar
  60. [60]
    A. Brignole, One-loop Kähler potential in non-renormalizable theories, Nucl. Phys. B 579 (2000) 101 [hep-th/0001121] [SPIRES].MathSciNetADSGoogle Scholar
  61. [61]
    Y. Yamada, Two loop renormalization group equations for soft SUSY breaking scalar interactions: Supergraph method, Phys. Rev. D 50 (1994) 3537 [hep-ph/9401241] [SPIRES].ADSGoogle Scholar
  62. [62]
    P.H. Chankowski and Z. Pluciennik, Renormalization group equations for seesaw neutrino masses, Phys. Lett. B 316 (1993) 312 [hep-ph/9306333] [SPIRES].ADSGoogle Scholar
  63. [63]
    K.S. Babu, C.N. Leung and J.T. Pantaleone, Renormalization of the neutrino mass operator, Phys. Lett. B 319 (1993) 191 [hep-ph/9309223] [SPIRES].ADSGoogle Scholar
  64. [64]
    Y. Grossman and H.E. Haber, Sneutrino mixing phenomena, Phys. Rev. Lett. 78 (1997) 3438 [hep-ph/9702421] [SPIRES].ADSGoogle Scholar
  65. [65]
    A. Dedes, H.E. Haber and J. Rosiek, Seesaw mechanism in the sneutrino sector and its consequences, JHEP 11 (2007) 059 [arXiv:0707.3718] [SPIRES].MathSciNetADSGoogle Scholar
  66. [66]
    M. Hirsch, H.V. Klapdor-Kleingrothaus and S.G. Kovalenko, B-L violating masses in softly broken supersymmetry, Phys. Lett. B 398 (1997) 311 [hep-ph/9701253] [SPIRES].ADSGoogle Scholar
  67. [67]
    J.M. Frere, M.V. Libanov and S.V. Troitsky, Neutrino masses from nonstandard supersymmetry breaking terms, Phys. Lett. B 479 (2000) 343 [hep-ph/9912204] [SPIRES].ADSGoogle Scholar
  68. [68]
    F. Borzumati and A. Masiero, Large muon and electron number violations in supergravity theories, Phys. Rev. Lett. 57 (1986) 961 [SPIRES].ADSGoogle Scholar
  69. [69]
    J.-h. Kang, P. Langacker and T.-j. Li, Neutrino masses in supersymmetric SU(3)C × SU(2)L × U(1)Y × U(1)-prime models, Phys. Rev. D 71 (2005) 015012 [hep-ph/0411404] [SPIRES].ADSGoogle Scholar
  70. [70]
    M. Dine, W. Fischler and M. Srednicki, Supersymmetric technicolor, Nucl. Phys. B 189 (1981) 575 [SPIRES]. ADSGoogle Scholar
  71. [71]
    S. Dimopoulos and S. Raby, Supercolor, Nucl. Phys. B 192 (1981) 353 [SPIRES].ADSGoogle Scholar
  72. [72]
    L. Alvarez-Gaume, M. Claudson and M.B. Wise, Low-energy supersymmetry, Nucl. Phys. B 207 (1982) 96 [SPIRES].ADSGoogle Scholar
  73. [73]
    C.R. Nappi and B.A. Ovrut, Supersymmetric extension of the SU(3) × SU(2) × U(1) model, Phys. Lett. B 113 (1982) 175 [SPIRES].ADSGoogle Scholar
  74. [74]
    S. Dimopoulos and S. Raby, Geometric hierarchy, Nucl. Phys. B 219 (1983) 479 [SPIRES].ADSGoogle Scholar
  75. [75]
    M. Dine and A.E. Nelson, Dynamical supersymmetry breaking at low-energies, Phys. Rev. D 48 (1993) 1277 [hep-ph/9303230] [SPIRES].ADSGoogle Scholar
  76. [76]
    M. Dine, A.E. Nelson and Y. Shirman, Low-energy dynamical supersymmetry breaking simplified, Phys. Rev. D 51 (1995) 1362 [hep-ph/9408384] [SPIRES].ADSGoogle Scholar
  77. [77]
    M. Dine, A.E. Nelson, Y. Nir and Y. Shirman, New tools for low-energy dynamical supersymmetry breaking, Phys. Rev. D 53 (1996) 2658 [hep-ph/9507378] [SPIRES].ADSGoogle Scholar
  78. [78]
    G.F. Giudice and R. Rattazzi, Theories with gauge-mediated supersymmetry breaking, Phys. Rept. 322 (1999) 419 [hep-ph/9801271] [SPIRES].ADSGoogle Scholar
  79. [79]
    R.N. Mohapatra, N. Okada and H.-B. Yu, Supersymmetry breaking by type II seesaw assisted anomaly mediation, Phys. Rev. D 77 (2008) 115017 [arXiv:0711.0956] [SPIRES].ADSGoogle Scholar
  80. [80]
    R.N. Mohapatra, N. Okada and H.-B. Yu, ν-GMSB with type III seesaw and phenomenology, Phys. Rev. D 78 (2008) 075011 [arXiv:0807.4524] [SPIRES].ADSGoogle Scholar
  81. [81]
    P. Fileviez Perez, H. Iminniyaz, G. Rodrigo and S. Spinner, Gauge mediated SUSY breaking via seesaw, Phys. Rev. D 81 (2010) 095013 [arXiv:0911.1360] [SPIRES].ADSGoogle Scholar
  82. [82]
    A. Melfo, A. Ramirez and G. Senjanović, Type II see-saw dominance in SO(10), arXiv:1005.0834 [SPIRES].
  83. [83]
    M. Hirsch, S. Kaneko and W. Porod, Supersymmetric seesaw type-II: LHC and lepton flavour violating phenomenology, Phys. Rev. D 78 (2008) 093004 [arXiv:0806.3361] [SPIRES]. ADSGoogle Scholar
  84. [84]
    J.N. Esteves et al., Flavour violation at the LHC: type-I versus type-II seesaw in minimal supergravity, JHEP 05 (2009) 003 [arXiv:0903.1408] [SPIRES].ADSGoogle Scholar
  85. [85]
    F. Borzumati and T. Yamashita, Minimal supersymmetric SU(5) model with nonrenormalizable operators: Seesaw mechanism and violation of flavour and CP, arXiv:0903.2793 [SPIRES].
  86. [86]
    F.R. Joaquim, Running effects on neutrino parameters and l il j γ predictions in the triplet-extended MSSM, JHEP 06 (2010) 079 [arXiv:0912.3427] [SPIRES].ADSGoogle Scholar
  87. [87]
    S.P. Martin, Generalized messengers of supersymmetry breaking and the sparticle mass spectrum, Phys. Rev. D 55 (1997) 3177 [hep-ph/9608224] [SPIRES].ADSGoogle Scholar
  88. [88]
    L. Calibbi, L. Ferretti, A. Romanino and R. Ziegler, Gauge coupling unification, the GUT scale and magic fields, Phys. Lett. B 672 (2009) 152 [arXiv:0812.0342] [SPIRES].ADSGoogle Scholar
  89. [89]
    M. Senami and K. Yamamoto, Lepton flavor violation with supersymmetric Higgs triplets in TeV region for neutrino masses and leptogenesis, Phys. Rev. D 69 (2004) 035004 [hep-ph/0305203] [SPIRES].ADSGoogle Scholar
  90. [90]
    A. Abada, C. Biggio, F. Bonnet, M.B. Gavela and T. Hambye, Low energy effects of neutrino masses, JHEP 12 (2007) 061 [arXiv:0707.4058] [SPIRES].ADSGoogle Scholar
  91. [91]
    M. Raidal et al., Flavour physics of leptons and dipole moments, Eur. Phys. J. C 57 (2008) 13 [arXiv:0801.1826] [SPIRES].ADSGoogle Scholar
  92. [92]
    G.F. Giudice and R. Rattazzi, Extracting supersymmetry-breaking effects from wave-function renormalization, Nucl. Phys. B 511 (1998) 25 [hep-ph/9706540] [SPIRES].ADSGoogle Scholar
  93. [93]
    L.J. Hall and L. Randall, Weak scale effective supersymmetry, Phys. Rev. Lett. 65 (1990) 2939 [SPIRES]. ADSGoogle Scholar
  94. [94]
    G. D’Ambrosio, G.F. Giudice, G. Isidori and A. Strumia, Minimal flavour violation: An effective field theory approach, Nucl. Phys. B 645 (2002) 155 [hep-ph/0207036] [SPIRES].ADSGoogle Scholar
  95. [95]
    V. Cirigliano, B. Grinstein, G. Isidori and M.B. Wise, Minimal flavor violation in the lepton sector, Nucl. Phys. B 728 (2005) 121 [hep-ph/0507001] [SPIRES].ADSGoogle Scholar
  96. [96]
    S. Davidson and F. Palorini, Various definitions of minimal flavour violation for leptons, Phys. Lett. B 642 (2006) 72 [hep-ph/0607329] [SPIRES].ADSGoogle Scholar
  97. [97]
    K.S. Babu and C. Kolda, Higgs-mediated τ → 3μ in the supersymmetric seesaw model, Phys. Rev. Lett. 89 (2002) 241802 [hep-ph/0206310] [SPIRES].ADSGoogle Scholar
  98. [98]
    A. Dedes, J.R. Ellis and M. Raidal, Higgs mediated B s,d 0μτ, eτ and τ → 3μ, eμμ decays in supersymmetric seesaw models, Phys. Lett. B 549 (2002) 159 [hep-ph/0209207] [SPIRES].ADSGoogle Scholar
  99. [99]
    A. Brignole and A. Rossi, Lepton flavour violating decays of supersymmetric Higgs bosons, Phys. Lett. B 566 (2003) 217 [hep-ph/0304081] [SPIRES].ADSGoogle Scholar
  100. [100]
    A. Brignole and A. Rossi, Anatomy and phenomenology of mu tau lepton flavour violation in the MSSM, Nucl. Phys. B 701 (2004) 3 [hep-ph/0404211] [SPIRES].ADSGoogle Scholar
  101. [101]
    LEP Working Group for Higgs boson searches collaboration, R. Barate et al., Search for the standard model Higgs boson at LEP, Phys. Lett. B 565 (2003) 61 [hep-ex/0306033] [SPIRES].ADSGoogle Scholar
  102. [102]
    MEGA collaboration, M.L. Brooks et al., New limit for the family-number non-conserving decay μ +e γ +, Phys. Rev. Lett. 83 (1999) 1521 [hep-ex/9905013] [SPIRES].ADSGoogle Scholar
  103. [103]
    BABAR collaboration, B. Aubert et al., Searches for lepton flavor violation in the decays τ ±e ± γ and τ ±μ ± γ, Phys. Rev. Lett. 104 (2010) 021802 [arXiv:0908.2381] [SPIRES].ADSGoogle Scholar
  104. [104]
    Belle collaboration, K. Hayasaka et al., New search for τμγ and τeγ decays at Belle, Phys. Lett. B 666 (2008) 16 [arXiv:0705.0650] [SPIRES].ADSGoogle Scholar
  105. [105]
    S. Heinemeyer, W. Hollik and G. Weiglein, FeynHiggs: a program for the calculation of the masses of the neutral CP-even Higgs bosons in the MSSM, Comput. Phys. Commun. 124 (2000) 76 [hep-ph/9812320] [SPIRES].zbMATHADSGoogle Scholar
  106. [106]
    MEG collaboration, E. Baracchini, First result from the MEG experiment, arXiv:1005.2569 [SPIRES].
  107. [107]
    M. Davier et al., The discrepancy between τ and e + e spectral functions revisited and the consequences for the muon magnetic anomaly, Eur. Phys. J. C 66 (2010) 127 [arXiv:0906.5443] [SPIRES].ADSGoogle Scholar
  108. [108]
    M. Davier, A. Hoecker, B. Malaescu, C.Z. Yuan and Z. Zhang, Reevaluation of the hadronic contribution to the muon magnetic anomaly using new e + e π + π cross section data from BABAR, Eur. Phys. J. C 66 (2010) 1 [arXiv:0908.4300] [SPIRES].ADSGoogle Scholar
  109. [109]
    S. Dimopoulos, M. Dine, S. Raby and S.D. Thomas, Experimental signatures of low energy gauge mediated supersymmetry breaking, Phys. Rev. Lett. 76 (1996) 3494 [hep-ph/9601367] [SPIRES].ADSGoogle Scholar
  110. [110]
    S. Dimopoulos, S.D. Thomas and J.D. Wells, Sparticle spectroscopy and electroweak symmetry breaking with gauge-mediated supersymmetry breaking, Nucl. Phys. B 488 (1997) 39 [hep-ph/9609434] [SPIRES].ADSGoogle Scholar
  111. [111]
    J.A. Bagger, K.T. Matchev, D.M. Pierce and R.-j. Zhang, Weak-scale phenomenology in models with gauge-mediated supersymmetry breaking, Phys. Rev. D 55 (1997) 3188 [hep-ph/9609444] [SPIRES].ADSGoogle Scholar
  112. [112]
    S. Ambrosanio, G.D. Kribs and S.P. Martin, Signals for gauge-mediated supersymmetry breaking models at the CERN LEP2 collider, Phys. Rev. D 56 (1997) 1761 [hep-ph/9703211] [SPIRES].ADSGoogle Scholar
  113. [113]
    J.L. Feng and T. Moroi, Tevatron signatures of longlived charged sleptons in gauge mediated supersymmetry breaking models, Phys. Rev. D 58 (1998) 035001 [hep-ph/9712499] [SPIRES].ADSGoogle Scholar
  114. [114]
    J.A. Grifols, R.N. Mohapatra and A. Riotto, New astrophysical constraints on the mass of the superlight gravitino, Phys. Lett. B 400 (1997) 124 [hep-ph/9612253] [SPIRES].ADSGoogle Scholar
  115. [115]
    M. Viel, J. Lesgourgues, M.G. Haehnelt, S. Matarrese and A. Riotto, Constraining warm dark matter candidates including sterile neutrinos and light gravitinos with WMAP and the Lyman-alpha forest, Phys. Rev. D 71 (2005) 063534 [astro-ph/0501562] [SPIRES].ADSGoogle Scholar
  116. [116]
    J.L. Feng, M. Kamionkowski and S.K. Lee, Light gravitinos at colliders and implications for cosmology, Phys. Rev. D 82 (2010) 015012 [arXiv:1004.4213] [SPIRES].ADSGoogle Scholar
  117. [117]
    W. Beenakker, R. Hopker, M. Spira and P.M. Zerwas, Squark and gluino production at hadron colliders, Nucl. Phys. B 492 (1997) 51 [hep-ph/9610490] [SPIRES].ADSGoogle Scholar
  118. [118]
    I. Hinchliffe and F.E. Paige, Measurements in gauge mediated SUSY breaking models at LHC, Phys. Rev. D 60 (1999) 095002 [hep-ph/9812233] [SPIRES].ADSGoogle Scholar
  119. [119]
    S. Ambrosanio, B. Mele, S. Petrarca, G. Polesello and A. Rimoldi, Measuring the SUSY breaking scale at the LHC in the slepton NLSP scenario of GMSB models, JHEP 01 (2001) 014 [hep-ph/0010081] [SPIRES].ADSGoogle Scholar
  120. [120]
    W. Buchmüller, K. Hamaguchi, M. Ratz and T. Yanagida, Supergravity at colliders, Phys. Lett. B 588 (2004) 90 [hep-ph/0402179] [SPIRES].ADSGoogle Scholar
  121. [121]
    K. Hamaguchi, Y. Kuno, T. Nakaya and M.M. Nojiri, A study of late decaying charged particles at future colliders, Phys. Rev. D 70 (2004) 115007 [hep-ph/0409248] [SPIRES].ADSGoogle Scholar
  122. [122]
    J.L. Feng and B.T. Smith, Slepton trapping at the large hadron and international linear colliders, Phys. Rev. D 71 (2005) 015004 [Erratum ibid. D 71 (2005) 019904] [hep-ph/0409278] [SPIRES].ADSGoogle Scholar
  123. [123]
    K. Hamaguchi, M.M. Nojiri and A. de Roeck, Prospects to study a long-lived charged next lightest supersymmetric particle at the LHC, JHEP 03 (2007) 046 [hep-ph/0612060] [SPIRES].ADSGoogle Scholar
  124. [124]
    K. Agashe and M. Graesser, Signals of supersymmetric lepton flavor violation at the LHC, Phys. Rev. D 61 (2000) 075008 [hep-ph/9904422] [SPIRES].ADSGoogle Scholar
  125. [125]
    I. Hinchliffe and F.E. Paige, Lepton flavor violation at the LHC, Phys. Rev. D 63 (2001) 115006 [hep-ph/0010086] [SPIRES].ADSGoogle Scholar
  126. [126]
    J. Hisano, R. Kitano and M.M. Nojiri, Slepton oscillation at large hadron collider, Phys. Rev. D 65 (2002) 116002 [hep-ph/0202129] [SPIRES].ADSGoogle Scholar
  127. [127]
    D.F. Carvalho, J.R. Ellis, M.E. Gomez, S. Lola and J.C. Romao, τ flavour violation in sparticle decays at the LHC, Phys. Lett. B 618 (2005) 162 [hep-ph/0206148] [SPIRES].ADSGoogle Scholar
  128. [128]
    A. Bartl et al., Test of lepton flavour violation at LHC, Eur. Phys. J. C 46 (2006) 783 [hep-ph/0510074] [SPIRES].ADSGoogle Scholar
  129. [129]
    R. Kitano, A clean slepton mixing signal at the LHC, JHEP 03 (2008) 023 [arXiv:0801.3486] [SPIRES].ADSGoogle Scholar
  130. [130]
    A. Brignole and A. Rossi, Flavour non-conservation in goldstino interactions, Nucl. Phys. B 587 (2000) 3 [hep-ph/0006036] [SPIRES].ADSGoogle Scholar
  131. [131]
    K. Hamaguchi and A. Ibarra, Probing lepton flavour violation in slepton NLSP scenarios, JHEP 02 (2005) 028 [hep-ph/0412229] [SPIRES].ADSGoogle Scholar
  132. [132]
    T. Aushev et al., Physics at super B factory, arXiv:1002.5012 [SPIRES].
  133. [133]
    M. Bona et al., SuperB: a high-luminosity asymmetric e + e super flavor factory. Conceptual design report, arXiv:0709.0451 [SPIRES].
  134. [134]
    ISS Physics Working Group collaboration, A. Bandyopadhyay et al., Physics at a future neutrino factory and super-beam facility, Rept. Prog. Phys. 72 (2009) 106201 [arXiv:0710.4947] [SPIRES].ADSGoogle Scholar
  135. [135]
    MINOS collaboration, J.M. Paley, Recent results and future prospects from MINOS, arXiv:0901.2131 [SPIRES].
  136. [136]
    M. Komatsu, P. Migliozzi and F. Terranova, Sensitivity to13 of the CERN to Gran Sasso neutrino beam, J. Phys. G 29 (2003) 443 [hep-ph/0210043] [SPIRES].ADSGoogle Scholar
  137. [137]
    T2K collaboration, Y. Obayashi, Reach of future accelerator and reactor neutrino efforts, arXiv:0807.4012 [SPIRES].
  138. [138]
    NOvA collaboration, D.S. Ayres et al., NOvA proposal to build a 30-kiloton off-axis detector to study neutrino oscillations in the Fermilab NuMI beamline, hep-ex/0503053 [SPIRES].
  139. [139]
    Double CHOOZ collaboration, F. Ardellier et al., Double CHOOZ: A search for the neutrino mixing angle θ 13, hep-ex/0606025 [SPIRES].
  140. [140]
    Daya-Bay collaboration, X. Guo et al., A precision measurement of the neutrino mixing angle θ 13 using reactor antineutrinos at Daya Bay, hep-ex/0701029 [SPIRES].
  141. [141]
    RENO collaboration, S.-B. Kim, RENO for neutrino mixing angle13, Prog. Part. Nucl. Phys. 64 (2010) 346 [SPIRES].ADSGoogle Scholar
  142. [142]
    J. Hisano, T. Moroi, K. Tobe and M. Yamaguchi, Lepton-flavor violation via right-handed neutrino Yukawa couplings in supersymmetric standard model, Phys. Rev. D 53 (1996) 2442 [hep-ph/9510309] [SPIRES].ADSGoogle Scholar
  143. [143]
    R. Kitano, M. Koike and Y. Okada, Detailed calculation of lepton flavor violating muon electron conversion rate for various nuclei, Phys. Rev. D 66 (2002) 096002 [Erratum ibid. D 76 (2007) 059902] [hep-ph/0203110] [SPIRES].ADSGoogle Scholar
  144. [144]
    COMET collaboration, Y.G. Cui et al., Conceptual design report for experimental search for lepton flavor violating μ e conversion at sensitivity of 10−16 with a slow-extracted bunched proton beam (COMET), KEK-2009-10 [SPIRES].
  145. [145]
    Mu2e collaboration, R.M. Carey et al., Proposal to search for μ Ne N with a single event sensitivity below 10−16, FERMILAB-PROPOSAL-0973 [SPIRES].

Copyright information

© The Author(s) 2010

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  • Andrea Brignole
    • 1
    Email author
  • Filipe R. Joaquim
    • 2
  • Anna Rossi
    • 3
  1. 1.INFN, Sezione di PadovaPaduaItaly
  2. 2.CERN, Theory DivisionGeneva 23Switzerland
  3. 3.Dipartimento di Fisica “G. Galilei”Università di PadovaPaduaItaly

Personalised recommendations