Neutrino masses from an A4 symmetry in holographic composite Higgs models

  • Francisco del Águila
  • Adrián Carmona
  • José Santiago
Article

Abstract

We show that holographic composite Higgs Models with a discrete A4 symmetry can be built, which naturally predict hierarchical charged lepton masses and an approximate tri-bimaximal lepton mixing with the correct scale of neutrino masses and a characteristic phenomenology. They also satisfy current constraints from electroweak precision tests, lepton flavor violation and lepton mixing in a large region of parameter space. Two features arise in our model phenomenologically relevant. First, an extra suppression on the lepton Yukawa couplings makes the τ lepton more composite than naively expected from its mass. As a consequence new light leptonic resonances, with masses as low as few hundreds of GeV, large couplings to τ and a very characteristic collider phenomenology, are quite likely. Second, the discrete symmetry A4 together with the model structure provide a double-layer of flavor protection that allows to keep tree-level mediated processes below present experimental limits. One-loop processes violating lepton flavor, like μ, may be however observable at future experiments.

Keywords

Neutrino Physics Field Theories in Higher Dimensions Discrete and Finite Symmetries 

References

  1. [1]
    D.B. Kaplan and H. Georgi, SU(2) × U(1) breaking by vacuum misalignment, Phys. Lett. B 136 (1984) 183 [SPIRES].ADSGoogle Scholar
  2. [2]
    D.B. Kaplan, H. Georgi and S. Dimopoulos, Composite Higgs scalars, Phys. Lett. B 136 (1984) 187 [SPIRES].ADSGoogle Scholar
  3. [3]
    J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200] [SPIRES].MATHMathSciNetADSGoogle Scholar
  4. [4]
    S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from non-critical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [SPIRES].MathSciNetADSGoogle Scholar
  5. [5]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [SPIRES].MATHMathSciNetGoogle Scholar
  6. [6]
    L. Randall and R. Sundrum, An alternative to compactification, Phys. Rev. Lett. 83 (1999) 4690 [hep-th/9906064] [SPIRES].MATHMathSciNetADSGoogle Scholar
  7. [7]
    L. Randall and R. Sundrum, A large mass hierarchy from a small extra dimension, Phys. Rev. Lett. 83 (1999) 3370 [hep-ph/9905221] [SPIRES].MATHMathSciNetADSGoogle Scholar
  8. [8]
    N. Arkani-Hamed, M. Porrati and L. Randall, Holography and phenomenology, JHEP 08 (2001) 017 [hep-th/0012148] [SPIRES].MathSciNetADSGoogle Scholar
  9. [9]
    R. Rattazzi and A. Zaffaroni, Comments on the holographic picture of the Randall-Sundrum model, JHEP 04 (2001) 021 [hep-th/0012248] [SPIRES].MathSciNetADSGoogle Scholar
  10. [10]
    M. Pérez-Victoria, Randall-Sundrum models and the regularized AdS/CFT correspondence, JHEP 05 (2001) 064 [hep-th/0105048] [SPIRES].Google Scholar
  11. [11]
    R. Contino, Y. Nomura and A. Pomarol, Higgs as a holographic pseudo-Goldstone boson, Nucl. Phys. B 671 (2003) 148 [hep-ph/0306259] [SPIRES].ADSGoogle Scholar
  12. [12]
    G.F. Giudice, C. Grojean, A. Pomarol and R. Rattazzi, The strongly-interacting light Higgs, JHEP 06 (2007) 045 [hep-ph/0703164] [SPIRES].ADSGoogle Scholar
  13. [13]
    R. Barbieri, B. Bellazzini, V.S. Rychkov and A. Varagnolo, The Higgs boson from an extended symmetry, Phys. Rev. D 76 (2007) 115008 [arXiv:0706.0432] [SPIRES]..ADSGoogle Scholar
  14. [14]
    B. Bellazzini, S. Pokorski, V.S. Rychkov and A. Varagnolo, Higgs doublet as a Goldstone boson in perturbative extensions of the Standard Model, JHEP 11 (2008) 027 [arXiv:0805.2107] [SPIRES].ADSGoogle Scholar
  15. [15]
    P. Lodone, Vector-like quarks in a composite Higgs model, JHEP 12 (2008) 029 [arXiv:0806.1472] [SPIRES].ADSGoogle Scholar
  16. [16]
    A. Pomarol and J. Serra, Top quark compositeness: feasibility and implications, Phys. Rev. D 78 (2008) 074026 [arXiv:0806.3247] [SPIRES].ADSGoogle Scholar
  17. [17]
    M. Gillioz, A light composite Higgs boson facing electroweak precision tests, Phys. Rev. D 80 (2009) 055003 [arXiv:0806.3450] [SPIRES].ADSGoogle Scholar
  18. [18]
    C. Anastasiou, E. Furlan and J. Santiago, Realistic composite Higgs models, Phys. Rev. D 79 (2009) 075003 [arXiv:0901.2117] [SPIRES].ADSGoogle Scholar
  19. [19]
    B. Gripaios, A. Pomarol, F. Riva and J. Serra, Beyond the minimal composite Higgs model, JHEP 04 (2009) 070 [arXiv:0902.1483] [SPIRES].ADSGoogle Scholar
  20. [20]
    H. Davoudiasl, S. Gopalakrishna, E. Ponton and J. Santiago, Warped 5-dimensional models: phenomenological status and experimental prospects, New J. Phys. 12 (2010) 075011 [arXiv:0908.1968] [SPIRES].ADSGoogle Scholar
  21. [21]
    K. Agashe, A. Delgado, M.J. May and R. Sundrum, RS1, custodial isospin and precision tests, JHEP 08 (2003) 050 [hep-ph/0308036] [SPIRES].ADSGoogle Scholar
  22. [22]
    K. Agashe, R. Contino, L. Da Rold and A. Pomarol, A custodial symmetry for \( Zb\bar{b} \), Phys. Lett. B 641 (2006) 62 [hep-ph/0605341] [SPIRES].ADSGoogle Scholar
  23. [23]
    A. Djouadi, G. Moreau and F. Richard, Resolving the A FBb puzzle in an extra dimensional model with an extended gauge structure, Nucl. Phys. B 773 (2007) 43 [hep-ph/0610173] [SPIRES]. ADSGoogle Scholar
  24. [24]
    K. Agashe, R. Contino and A. Pomarol, The minimal composite Higgs model, Nucl. Phys. B 719 (2005) 165 [hep-ph/0412089] [SPIRES].ADSGoogle Scholar
  25. [25]
    A.D. Medina, N.R. Shah and C.E.M. Wagner, Gauge-Higgs unification and radiative electroweak symmetry breaking in warped extra dimensions, Phys. Rev. D 76 (2007) 095010 [arXiv:0706.1281] [SPIRES].ADSGoogle Scholar
  26. [26]
    C. Csáki, A. Falkowski and A. Weiler, The flavor of the composite pseudo-Goldstone Higgs, JHEP 09 (2008) 008 [arXiv:0804.1954] [SPIRES].ADSGoogle Scholar
  27. [27]
    K. Agashe and R. Contino, The minimal composite Higgs model and electroweak precision tests, Nucl. Phys. B 742 (2006) 59 [hep-ph/0510164] [SPIRES].ADSGoogle Scholar
  28. [28]
    M.S. Carena, E. Ponton, J. Santiago and C.E.M. Wagner, Light Kaluza-Klein states in Randall-Sundrum models with custodial SU(2), Nucl. Phys. B 759 (2006) 202 [hep-ph/0607106] [SPIRES].MathSciNetADSGoogle Scholar
  29. [29]
    M.S. Carena, E. Ponton, J. Santiago and C.E.M. Wagner, Electroweak constraints on warped models with custodial symmetry, Phys. Rev. D 76 (2007) 035006 [hep-ph/0701055] [SPIRES].ADSGoogle Scholar
  30. [30]
    K. Agashe, A. Falkowski, I. Low and G. Servant, KK parity in warped extra dimension, JHEP 04 (2008) 027 [arXiv:0712.2455] [SPIRES].MathSciNetADSGoogle Scholar
  31. [31]
    G. Panico, E. Ponton, J. Santiago and M. Serone, Dark matter and electroweak symmetry breaking in models with warped extra dimensions, Phys. Rev. D 77 (2008) 115012 [arXiv:0801.1645] [SPIRES].ADSGoogle Scholar
  32. [32]
    M. Carena, A.D. Medina, N.R. Shah and C.E.M. Wagner, Gauge-Higgs unification, neutrino masses and dark matter in warped extra dimensions, Phys. Rev. D 79 (2009) 096010 [arXiv:0901.0609] [SPIRES].ADSGoogle Scholar
  33. [33]
    Y. Grossman and M. Neubert, Neutrino masses and mixings in non-factorizable geometry, Phys. Lett. B 474 (2000) 361 [hep-ph/9912408] [SPIRES].MathSciNetADSGoogle Scholar
  34. [34]
    S.J. Huber and Q. Shafi, Fermion masses, mixings and proton decay in a Randall-Sundrum model, Phys. Lett. B 498 (2001) 256 [hep-ph/0010195] [SPIRES].ADSGoogle Scholar
  35. [35]
    S.J. Huber and Q. Shafi, Neutrino oscillations and rare processes in models with a small extra dimension, Phys. Lett. B 512 (2001) 365 [hep-ph/0104293] [SPIRES].ADSGoogle Scholar
  36. [36]
    S.J. Huber and Q. Shafi, Majorana neutrinos in a warped 5D standard model, Phys. Lett. B 544 (2002) 295 [hep-ph/0205327] [SPIRES].ADSGoogle Scholar
  37. [37]
    S.J. Huber and Q. Shafi, Seesaw mechanism in warped geometry, Phys. Lett. B 583 (2004) 293 [hep-ph/0309252] [SPIRES].ADSGoogle Scholar
  38. [38]
    N. Arkani-Hamed and M. Schmaltz, Hierarchies without symmetries from extra dimensions, Phys. Rev. D 61 (2000) 033005 [hep-ph/9903417] [SPIRES].ADSGoogle Scholar
  39. [39]
    K. Agashe, T. Okui and R. Sundrum, A common origin for neutrino anarchy and charged hierarchies, Phys. Rev. Lett. 102 (2009) 101801 [arXiv:0810.1277] [SPIRES].ADSGoogle Scholar
  40. [40]
    E. Ma and G. Rajasekaran, Softly broken A 4 symmetry for nearly degenerate neutrino masses, Phys. Rev. D 64 (2001) 113012 [hep-ph/0106291] [SPIRES].ADSGoogle Scholar
  41. [41]
    K.S. Babu, E. Ma and J.W.F. Valle, Underlying A 4 symmetry for the neutrino mass matrix and the quark mixing matrix, Phys. Lett. B 552 (2003) 207 [hep-ph/0206292] [SPIRES].ADSGoogle Scholar
  42. [42]
    M. Hirsch et al., Phenomenological tests of supersymmetric A 4 family symmetry model of neutrino mass, Phys. Rev. D 69 (2004) 093006 [hep-ph/0312265] [SPIRES].ADSGoogle Scholar
  43. [43]
    E. Ma, A 4 origin of the neutrino mass matrix, Phys. Rev. D 70 (2004) 031901 [hep-ph/0404199] [SPIRES].ADSGoogle Scholar
  44. [44]
    S.-L. Chen, M. Frigerio and E. Ma, Hybrid seesaw neutrino masses with A 4 family symmetry, Nucl. Phys. B 724 (2005) 423 [hep-ph/0504181] [SPIRES].ADSGoogle Scholar
  45. [45]
    E. Ma, Tribimaximal neutrino mixing from a supersymmetric model with A 4 family symmetry, Phys. Rev. D 73 (2006) 057304 [hep-ph/0511133] [SPIRES].ADSGoogle Scholar
  46. [46]
    G. Altarelli and F. Feruglio, Tri-bimaximal neutrino mixing, a 4 and the modular symmetry, Nucl. Phys. B 741 (2006) 215 [hep-ph/0512103] [SPIRES].MathSciNetADSGoogle Scholar
  47. [47]
    I. de Medeiros Varzielas, S.F. King and G.G. Ross, Tri-bimaximal neutrino mixing from discrete subgroups of SU(3) and SO(3) family symmetry, Phys. Lett. B 644 (2007) 153 [hep-ph/0512313] [SPIRES].ADSGoogle Scholar
  48. [48]
    X.-G. He, Y.-Y. Keum and R.R. Volkas, A 4 flavour symmetry breaking scheme for understanding quark and neutrino mixing angles, JHEP 04 (2006) 039 [hep-ph/0601001] [SPIRES].ADSGoogle Scholar
  49. [49]
    B. Adhikary, B. Brahmachari, A. Ghosal, E. Ma and M.K. Parida, A 4 symmetry and prediction of U(e3) in a modified Altarelli-Feruglio model, Phys. Lett. B 638 (2006) 345 [hep-ph/0603059] [SPIRES].ADSGoogle Scholar
  50. [50]
    L. Lavoura and H. Kuhbock, Predictions of an A 4 model with a five-parameter neutrino mass matrix, Mod. Phys. Lett. A 22 (2007) 181 [hep-ph/0610050] [SPIRES].ADSGoogle Scholar
  51. [51]
    S.F. King and M. Malinsky, A 4 family symmetry and quark-lepton unification, Phys. Lett. B 645 (2007) 351 [hep-ph/0610250] [SPIRES].ADSGoogle Scholar
  52. [52]
    S. Morisi, M. Picariello and E. Torrente-Lujan, A model for fermion masses and lepton mixing in SO(10) × A 4 , Phys. Rev. D 75 (2007) 075015 [hep-ph/0702034] [SPIRES].ADSGoogle Scholar
  53. [53]
    F. Yin, Neutrino mixing matrix in the 3-3-1 model with heavy leptons and A 4 symmetry, Phys. Rev. D 75 (2007) 073010 [arXiv:0704.3827] [SPIRES].ADSGoogle Scholar
  54. [54]
    F. Bazzocchi, S. Kaneko and S. Morisi, A SUSY A 4 model for fermion masses and mixings, JHEP 03 (2008) 063 [arXiv:0707.3032] [SPIRES].MathSciNetADSGoogle Scholar
  55. [55]
    W. Grimus and H. Kuhbock, Embedding the Zee-Wolfenstein neutrino mass matrix in an SO(10) × A 4 GUT scenario, Phys. Rev. D 77 (2008) 055008 [arXiv:0710.1585] [SPIRES].ADSGoogle Scholar
  56. [56]
    F. Bazzocchi, S. Morisi and M. Picariello, Embedding A 4 into left-right flavor symmetry: tribimaximal neutrino mixing and fermion hierarchy, Phys. Lett. B 659 (2008) 628 [arXiv:0710.2928] [SPIRES].ADSGoogle Scholar
  57. [57]
    M. Honda and M. Tanimoto, Deviation from tri-bimaximal neutrino mixing in A 4 flavor symmetry, Prog. Theor. Phys. 119 (2008) 583 [arXiv:0801.0181] [SPIRES].MATHADSGoogle Scholar
  58. [58]
    B. Brahmachari, S. Choubey and M. Mitra, The A 4 flavor symmetry and neutrino phenomenology, Phys. Rev. D 77 (2008) 073008 [Erratum ibid. D 77 (2008) 119901] [arXiv:0801.3554] [SPIRES].ADSGoogle Scholar
  59. [59]
    G. Altarelli, F. Feruglio and C. Hagedorn, A SUSY SU(5) grand unified model of tri-bimaximal mixing from A 4, JHEP 03 (2008) 052 [arXiv:0802.0090] [SPIRES].ADSGoogle Scholar
  60. [60]
    F. Bazzocchi, S. Morisi, M. Picariello and E. Torrente-Lujan, Embedding A 4 into SU(3) × U(1) flavor symmetry: large neutrino mixing and fermion mass hierarchy in SO(10) GUT, J. Phys. G 36 (2009) 015002 [arXiv:0802.1693] [SPIRES].ADSGoogle Scholar
  61. [61]
    B. Adhikary and A. Ghosal, Nonzero U e3 , CP-violation and leptogenesis in a see-saw type softly broken A 4 symmetric model, Phys. Rev. D 78 (2008) 073007 [arXiv:0803.3582] [SPIRES]. ADSGoogle Scholar
  62. [62]
    Y. Lin, A predictive A 4 model, charged lepton hierarchy and tri-bimaximal sum rule, Nucl. Phys. B 813 (2009) 91 [arXiv:0804.2867] [SPIRES].ADSGoogle Scholar
  63. [63]
    F. Bazzocchi, M. Frigerio and S. Morisi, Fermion masses and mixing in models with SO(10) × A 4 symmetry, Phys. Rev. D 78 (2008) 116018 [arXiv:0809.3573] [SPIRES].ADSGoogle Scholar
  64. [64]
    S. Morisi, Tri-bimaximal lepton mixing with A 4 semidirect product Z 2 × Z 2 × Z 2, Phys. Rev. D 79 (2009) 033008 [arXiv:0901.1080] [SPIRES].ADSGoogle Scholar
  65. [65]
    P. Ciafaloni, M. Picariello, E. Torrente-Lujan and A. Urbano, Neutrino masses and tribimaximal mixing in minimal renormalizable SUSY SU(5) grand unified model with A 4 flavor symmetry, Phys. Rev. D 79 (2009) 116010 [arXiv:0901.2236] [SPIRES].ADSGoogle Scholar
  66. [66]
    M.-C. Chen and S.F. King, A 4 see-saw models and form dominance, JHEP 06 (2009) 072 [arXiv:0903.0125] [SPIRES].MathSciNetADSGoogle Scholar
  67. [67]
    G.C. Branco, R. Gonzalez Felipe, M.N. Rebelo and H. Serodio, Resonant leptogenesis and tribimaximal leptonic mixing with A 4 symmetry, Phys. Rev. D 79 (2009) 093008 [arXiv:0904.3076] [SPIRES].ADSGoogle Scholar
  68. [68]
    A. Hayakawa, H. Ishimori, Y. Shimizu and M. Tanimoto, Deviation from tri-bimaximal mixing and flavor symmetry breaking in a seesaw type A 4 model, Phys. Lett. B 680 (2009) 334 [arXiv:0904.3820] [SPIRES].ADSGoogle Scholar
  69. [69]
    G. Altarelli and D. Meloni, A simplest A 4 model for tri-bimaximal neutrino mixing, J. Phys. G 36 (2009) 085005 [arXiv:0905.0620] [SPIRES]. ADSGoogle Scholar
  70. [70]
    Y. Lin, Tri-bimaximal neutrino mixing from A 4 and θ 13θ C, Nucl. Phys. B 824 (2010) 95 [arXiv:0905.3534] [SPIRES].ADSGoogle Scholar
  71. [71]
    C. Hagedorn, E. Molinaro and S.T. Petcov, Majorana phases and leptogenesis in see-saw models with A 4 symmetry, JHEP 09 (2009) 115 [arXiv:0908.0240] [SPIRES].MathSciNetADSGoogle Scholar
  72. [72]
    E. Ma, Neutrino tribimaximal mixing from A 4 alone, Mod. Phys. Lett. A 25 (2010) 2215 [arXiv:0908.3165] [SPIRES].ADSGoogle Scholar
  73. [73]
    T.J. Burrows and S.F. King, A 4 family symmetry from SU(5) SUSY GUTs in 6d, Nucl. Phys. B 835 (2010) 174 [arXiv:0909.1433] [SPIRES].MathSciNetADSGoogle Scholar
  74. [74]
    A. Albaid, Fermion masses and mixings in a minimal SO(10) × A 4 SUSY GUT, Phys. Rev. D 80 (2009) 093002 [arXiv:0909.1762] [SPIRES].ADSGoogle Scholar
  75. [75]
    P. Ciafaloni, M. Picariello, A. Urbano and E. Torrente-Lujan, Toward minimal renormalizable SUSY SU(5) grand unified model with tribimaximal mixing from A 4 flavor symmetry, Phys. Rev. D 81 (2010) 016004 [arXiv:0909.2553] [SPIRES].ADSGoogle Scholar
  76. [76]
    F. Feruglio, C. Hagedorn and L. Merlo, Vacuum alignment in SUSY A 4 models, JHEP 03 (2010) 084 [arXiv:0910.4058] [SPIRES].ADSGoogle Scholar
  77. [77]
    S. Morisi and E. Peinado, An A 4 model for lepton masses and mixings, Phys. Rev. D 80 (2009) 113011 [arXiv:0910.4389] [SPIRES].ADSGoogle Scholar
  78. [78]
    J. Berger and Y. Grossman, Model of leptons from SO(3) → A 4, JHEP 02 (2010) 071 [arXiv:0910.4392] [SPIRES].ADSGoogle Scholar
  79. [79]
    F. Feruglio, C. Hagedorn, Y. Lin and L. Merlo, Lepton flavour violation in models with A 4 flavour symmetry, Nucl. Phys. B 809 (2009) 218 [arXiv:0807.3160] [SPIRES].ADSGoogle Scholar
  80. [80]
    C. Hagedorn, E. Molinaro and S.T. Petcov, Charged lepton flavour violating radiative decays \( {\ell_i} \to {\ell_j} + \gamma \) in see-saw models with A 4 symmetry, JHEP 02 (2010) 047 [arXiv:0911.3605] [SPIRES].ADSGoogle Scholar
  81. [81]
    F. Feruglio, C. Hagedorn, Y. Lin and L. Merlo, Lepton flavour violation in a supersymmetric model with A 4 flavour symmetry, arXiv:0911.3874 [SPIRES].
  82. [82]
    G.J. Ding and J.F. Liu, Lepton flavor violation in models with A 4 and S 4 flavor symmetries, JHEP 05 (2010) 029 [arXiv:0911.4799] [SPIRES].ADSGoogle Scholar
  83. [83]
    P.F. Harrison, D.H. Perkins and W.G. Scott, Tri-bimaximal mixing and the neutrino oscillation data, Phys. Lett. B 530 (2002) 167 [hep-ph/0202074] [SPIRES].ADSGoogle Scholar
  84. [84]
    M.C. Gonzalez-Garcia and M. Maltoni, Phenomenology with massive neutrinos, Phys. Rept. 460 (2008) 1 [arXiv:0704.1800] [SPIRES].ADSGoogle Scholar
  85. [85]
    T. Schwetz, M.A. Tortola and J.W.F. Valle, Three-flavour neutrino oscillation update, New J. Phys. 10 (2008) 113011 [arXiv:0808.2016] [SPIRES].ADSGoogle Scholar
  86. [86]
    G.L. Fogli, E. Lisi, A. Marrone, A. Palazzo and A.M. Rotunno, What we (would like to) know about the neutrino mass, arXiv:0809.2936 [SPIRES].
  87. [87]
    C. Csáki, C. Delaunay, C. Grojean and Y. Grossman, A model of lepton masses from a warped extra dimension, JHEP 10 (2008) 055 [arXiv:0806.0356] [SPIRES].ADSGoogle Scholar
  88. [88]
    F. Feruglio, C. Hagedorn, Y. Lin and L. Merlo, Tri-bimaximal neutrino mixing and quark masses from a discrete flavour symmetry, Nucl. Phys. B 775 (2007) 120 [hep-ph/0702194] [SPIRES].ADSGoogle Scholar
  89. [89]
    M.-C. Chen, K.T. Mahanthappa and F. Yu, A viable Randall-Sundrum model for quarks and leptons with T′ family symmetry, Phys. Rev. D 81 (2010) 036004 [arXiv:0907.3963] [SPIRES]. ADSGoogle Scholar
  90. [90]
    M.-C. Chen, K.T. Mahanthappa and F. Yu, A viable flavor model for quarks and leptons in RS with T′ family symmetry, A IP Conf. Proc. 1200 (2010) 623 [arXiv:0909.5472] [SPIRES]. ADSGoogle Scholar
  91. [91]
    I. de Medeiros Varzielas and G.G. Ross, SU(3) family symmetry and neutrino bi-tri-maximal mixing, Nucl. Phys. B 733 (2006) 31 [hep-ph/0507176] [SPIRES].ADSGoogle Scholar
  92. [92]
    I. de Medeiros Varzielas, S.F. King and G.G. Ross, Neutrino tri-bi-maximal mixing from a non-Abelian discrete family symmetry, Phys. Lett. B 648 (2007) 201 [hep-ph/0607045] [SPIRES].ADSGoogle Scholar
  93. [93]
    A. Atre, M. Carena, T. Han and J. Santiago, Heavy quarks above the top at the Tevatron, Phys. Rev. D 79 (2009) 054018 [arXiv:0806.3966] [SPIRES].ADSGoogle Scholar
  94. [94]
    K. Agashe, Relaxing constraints from lepton flavor violation in 5D flavorful theories, Phys. Rev. D 80 (2009) 115020 [arXiv:0902.2400] [SPIRES].ADSGoogle Scholar
  95. [95]
    A.J. Buras, B. Duling and S. Gori, The impact of Kaluza-Klein fermions on standard model fermion couplings in a RS model with custodial protection, JHEP 09 (2009) 076 [arXiv:0905.2318] [SPIRES].ADSGoogle Scholar
  96. [96]
    G. von Gersdorff, N. Irges and M. Quirós, Finite mass corrections in orbifold gauge theories, hep-ph/0206029 [SPIRES].
  97. [97]
    R. Contino, L. Da Rold and A. Pomarol, Light custodians in natural composite Higgs models, Phys. Rev. D 75 (2007) 055014 [hep-ph/0612048] [SPIRES].ADSGoogle Scholar
  98. [98]
    J. Santiago, Minimal flavor protection: a new flavor paradigm in warped models, JHEP 12 (2008) 046 [arXiv:0806.1230] [SPIRES].MathSciNetADSGoogle Scholar
  99. [99]
    F. del Aguila and J. Santiago, Universality limits on bulk fermions, Phys. Lett. B 493 (2000) 175 [hep-ph/0008143] [SPIRES].ADSGoogle Scholar
  100. [100]
    F. del Aguila and J. Santiago, Large top mixing from extra dimensions, hep-ph/0011143 [SPIRES].
  101. [101]
    H. Georgi, A.K. Grant and G. Hailu, Brane couplings from bulk loops, Phys. Lett. B 506 (2001) 207 [hep-ph/0012379] [SPIRES].MathSciNetADSGoogle Scholar
  102. [102]
    M.S. Carena, T.M.P. Tait and C.E.M. Wagner, Branes and orbifolds are opaque, Acta Phys. Polon. B 33 (2002) 2355 [hep-ph/0207056] [SPIRES].MathSciNetADSGoogle Scholar
  103. [103]
    H. Davoudiasl, J.L. Hewett and T.G. Rizzo, Brane localized kinetic terms in the Randall-Sundrum model, Phys. Rev. D 68 (2003) 045002 [hep-ph/0212279] [SPIRES].MathSciNetADSGoogle Scholar
  104. [104]
    M.S. Carena, E. Ponton, T.M.P. Tait and C.E.M. Wagner, Opaque branes in warped backgrounds, Phys. Rev. D 67 (2003) 096006 [hep-ph/0212307] [SPIRES].ADSGoogle Scholar
  105. [105]
    F. del Aguila, M. Perez-Victoria and J. Santiago, Bulk fields with general brane kinetic terms, JHEP 02 (2003) 051 [hep-th/0302023] [SPIRES].Google Scholar
  106. [106]
    F. del Aguila, M. Perez-Victoria and J. Santiago, Physics of brane kinetic terms, Acta Phys. Polon. B 34 (2003) 5511 [hep-ph/0310353].ADSGoogle Scholar
  107. [107]
    F. del Aguila, M. Pérez-Victoria and J. Santiago, Effective description of brane terms in extra dimensions, JHEP 10 (2006) 056 [hep-ph/0601222] [SPIRES].Google Scholar
  108. [108]
    M.S. Carena, A. Delgado, E. Ponton, T.M.P. Tait and C.E.M. Wagner, Precision electroweak data and unification of couplings in warped extra dimensions, Phys. Rev. D 68 (2003) 035010 [hep-ph/0305188] [SPIRES].ADSGoogle Scholar
  109. [109]
    M.S. Carena, A. Delgado, E. Ponton, T.M.P. Tait and C.E.M. Wagner, Warped fermions and precision tests, Phys. Rev. D 71 (2005) 015010 [hep-ph/0410344] [SPIRES].ADSGoogle Scholar
  110. [110]
    K. Agashe, A.E. Blechman and F. Petriello, Probing the Randall-Sundrum geometric origin of flavor with lepton flavor violation, Phys. Rev. D 74 (2006) 053011 [hep-ph/0606021] [SPIRES].ADSGoogle Scholar
  111. [111]
    D. Tommasini, G. Barenboim, J. Bernabeu and C. Jarlskog, Non-decoupling of heavy neutrinos and lepton flavour violation, Nucl. Phys. B 444 (1995) 451 [hep-ph/9503228] [SPIRES].ADSGoogle Scholar
  112. [112]
    J.I. Illana and T. Riemann, Charged lepton flavour violation from massive neutrinos in Z decays, Phys. Rev. D 63 (2001) 053004 [hep-ph/0010193] [SPIRES].ADSGoogle Scholar
  113. [113]
    T. Appelquist and J. Carazzone, Infrared singularities and massive fields, Phys. Rev. D 11 (1975) 2856 [SPIRES].ADSGoogle Scholar
  114. [114]
    Particle Data Group collaboration, C. Amsler et al., Review of particle physics, Phys. Lett. B 667 (2008) 1 [SPIRES].ADSGoogle Scholar
  115. [115]
    F. del Aguila, J. de Blas and M. Pérez-Victoria, Effects of new leptons in electroweak precision data, Phys. Rev. D 78 (2008) 013010 [arXiv:0803.4008] [SPIRES].ADSGoogle Scholar
  116. [116]
    F. del Aguila, J.A. Aguilar-Saavedra and J. de Blas, Trilepton signals: the golden channel for seesaw searches at LHC, Acta Phys. Polon. B 40 (2009) 2901 [arXiv:0910.2720] [SPIRES]. ADSGoogle Scholar
  117. [117]
    K. Agashe and R. Contino, Composite Higgs-mediated FCNC, Phys. Rev. D 80 (2009) 075016 [arXiv:0906.1542] [SPIRES].ADSGoogle Scholar
  118. [118]
    A. Azatov, M. Toharia and L. Zhu, Higgs mediated FCNC’s in warped extra dimensions, Phys. Rev. D 80 (2009) 035016 [arXiv:0906.1990] [SPIRES].ADSGoogle Scholar
  119. [119]
    Y. Kuno and Y. Okada, Muon decay and physics beyond the standard model, Rev. Mod. Phys. 73 (2001) 151 [hep-ph/9909265] [SPIRES].ADSGoogle Scholar
  120. [120]
    P. Wintz, Results of the SINDRUM-II experiment, prepared for 29th International Conference on High-Energy Physics (ICHEP 98), July 23–29, Vancouver, Canada (1998).Google Scholar
  121. [121]
    F. del Aguila and M.J. Bowick, Suppression of lepton number violation mediated by ΔI = 0 mass fermions, Phys. Lett. B 119 (1982) 144 [SPIRES].ADSGoogle Scholar
  122. [122]
    M. Blanke, A.J. Buras, B. Duling, A. Poschenrieder and C. Tarantino, Charged lepton flavour violation and (g − 2)μ in the littlest Higgs model with T-parity: a clear distinction from supersymmetry, JHEP 05 (2007) 013 [hep-ph/0702136] [SPIRES].ADSGoogle Scholar
  123. [123]
    T. Goto, Y. Okada and Y. Yamamoto, Ultraviolet divergences of flavor changing amplitudes in the littlest Higgs model with T-parity, Phys. Lett. B 670 (2009) 378 [arXiv:0809.4753] [SPIRES].ADSGoogle Scholar
  124. [124]
    F. del Aguila, J.I. Illana and M.D. Jenkins, Precise limits from lepton flavour violating processes on the littlest Higgs model with T-parity, JHEP 01 (2009) 080 [arXiv:0811.2891] [SPIRES]. Google Scholar
  125. [125]
    F. del Aguila and M.J. Bowick, The possibility of new fermions with ΔI = 0 mass, Nucl. Phys. B 224 (1983) 107 [SPIRES].ADSGoogle Scholar
  126. [126]
    F. del Aguila, M. Pérez-Victoria and J. Santiago, Observable contributions of new exotic quarks to quark mixing, JHEP 09 (2000) 011 [hep-ph/0007316] [SPIRES].Google Scholar
  127. [127]
    A. Maki, Status of the MEG experiment, AIP Conf. Proc. 981 (2008) 363 [SPIRES].ADSGoogle Scholar
  128. [128]
    F. Del Aguila and J. Santiago, Signals from extra dimensions decoupled from the compactification scale, JHEP 03 (2002) 010 [hep-ph/0111047] [SPIRES].Google Scholar
  129. [129]
    K. Agashe and G. Servant, Baryon number in warped GUTs: model building and (dark matter related) phenomenology, JCAP 02 (2005) 002 [hep-ph/0411254] [SPIRES].ADSGoogle Scholar
  130. [130]
    F. del Aguila, J.A. Aguilar-Saavedra and R. Pittau, Heavy neutrino signals at large hadron colliders, JHEP 10 (2007) 047 [hep-ph/0703261] [SPIRES].Google Scholar
  131. [131]
    F. del Aguila and J.A. Aguilar-Saavedra, Distinguishing seesaw models at LHC with multi-lepton signals, Nucl. Phys. B 813 (2009) 22 [arXiv:0808.2468] [SPIRES].ADSGoogle Scholar
  132. [132]
    F. del Aguila, L. Ametller, G.L. Kane and J. Vidal, Vector like fermion and standard Higgs production at hadron colliders, Nucl. Phys. B 334 (1990) 1 [SPIRES]. ADSGoogle Scholar
  133. [133]
    J.A. Aguilar-Saavedra, Heavy lepton pair production at LHC: model discrimination with multi-lepton signals, Nucl. Phys. B 828 (2010) 289 [arXiv:0905.2221] [SPIRES].ADSGoogle Scholar
  134. [134]
    K. Agashe, G. Perez and A. Soni, Flavor structure of warped extra dimension models, Phys. Rev. D 71 (2005) 016002 [hep-ph/0408134] [SPIRES].ADSGoogle Scholar
  135. [135]
    G. Moreau and J.I. Silva-Marcos, Flavour physics of the RS model with KK masses reachable at LHC, JHEP 03 (2006) 090 [hep-ph/0602155] [SPIRES].ADSGoogle Scholar
  136. [136]
    S. Casagrande, F. Goertz, U. Haisch, M. Neubert and T. Pfoh, Flavor physics in the Randall-Sundrum model: I. Theoretical setup and electroweak precision tests, JHEP 10 (2008) 094 [arXiv:0807.4937] [SPIRES].ADSGoogle Scholar
  137. [137]
    M. Blanke, A.J. Buras, B. Duling, S. Gori and A. Weiler, ΔF = 2 observables and fine-tuning in a warped extra dimension with custodial protection, JHEP 03 (2009) 001 [arXiv:0809.1073] [SPIRES].ADSGoogle Scholar
  138. [138]
    K. Agashe, A. Azatov and L. Zhu, Flavor Violation Tests of Warped/Composite SM in the Two-Site Approach, Phys. Rev. D 79 (2009) 056006 [arXiv:0810.1016] [SPIRES].ADSGoogle Scholar
  139. [139]
    M.E. Albrecht, M. Blanke, A.J. Buras, B. Duling and K. Gemmler, Electroweak and flavour structure of a warped extra dimension with custodial protection, JHEP 09 (2009) 064 [arXiv:0903.2415] [SPIRES].ADSGoogle Scholar
  140. [140]
    M. Bauer, S. Casagrande, U. Haisch and M. Neubert, Flavor physics in the Randall-Sundrum model: II. Tree-level weak-interaction processes, arXiv:0912.1625 [SPIRES].
  141. [141]
    G. Cacciapaglia et al., A GIM mechanism from extra dimensions, JHEP 04 (2008) 006 [arXiv:0709.1714] [SPIRES].ADSGoogle Scholar
  142. [142]
    A.L. Fitzpatrick, G. Perez and L. Randall, Flavor from minimal flavor violation & a viable Randall-Sundrum model, Phys. Rev. Lett. 100 (2008) 171604 [arXiv:0710.1869] [SPIRES].ADSGoogle Scholar
  143. [143]
    C. Cheung, A.L. Fitzpatrick and L. Randall, Sequestering CP violation and GIM-violation with warped extra dimensions, JHEP 01 (2008) 069 [arXiv:0711.4421] [SPIRES].ADSGoogle Scholar
  144. [144]
    M.C. Chen and H.B. Yu, Minimal flavor violation in the lepton sector of the Randall-Sundrum model, Phys. Lett. B 672 (2009) 253 [arXiv:0804.2503] [SPIRES].ADSGoogle Scholar
  145. [145]
    C. Csáki, A. Falkowski and A. Weiler, A simple flavor protection for RS, Phys. Rev. D 80 (2009) 016001 [arXiv:0806.3757] [SPIRES].ADSGoogle Scholar
  146. [146]
    C. Csáki, G. Perez, Z. Surujon and A. Weiler, Flavor alignment via shining in RS, Phys. Rev. D 81 (2010) 075025 [arXiv:0907.0474] [SPIRES].ADSGoogle Scholar
  147. [147]
    K. Agashe, A. Belyaev, T. Krupovnickas, G. Perez and J. Virzi, LHC signals from warped extra dimensions, Phys. Rev. D 77 (2008) 015003 [hep-ph/0612015] [SPIRES].ADSGoogle Scholar
  148. [148]
    B. Lillie, L. Randall and L.-T. Wang, The bulk RS KK-gluon at the LHC, JHEP 09 (2007) 074 [hep-ph/0701166] [SPIRES].ADSGoogle Scholar
  149. [149]
    B. Lillie, J. Shu and T.M.P. Tait, Kaluza-Klein gluons as a diagnostic of warped models, Phys. Rev. D 76 (2007) 115016 [arXiv:0706.3960] [SPIRES].ADSGoogle Scholar
  150. [150]
    F. Ledroit, G. Moreau and J. Morel, Probing RS scenarios of flavour at LHC via leptonic channels, JHEP 09 (2007) 071 [hep-ph/0703262] [SPIRES].ADSGoogle Scholar
  151. [151]
    A. Djouadi, G. Moreau and R.K. Singh, Kaluza-Klein excitations of gauge bosons at the LHC, Nucl. Phys. B 797 (2008) 1 [arXiv:0706.4191] [SPIRES].ADSGoogle Scholar
  152. [152]
    K. Agashe et al., LHC signals for warped electroweak neutral gauge bosons, Phys. Rev. D 76 (2007) 115015 [arXiv:0709.0007] [SPIRES].ADSGoogle Scholar
  153. [153]
    K. Agashe, S. Gopalakrishna, T. Han, G.-Y. Huang and A. Soni, LHC signals for warped electroweak charged gauge bosons, Phys. Rev. D 80 (2009) 075007 [arXiv:0810.1497] [SPIRES]. ADSGoogle Scholar
  154. [154]
    K. Agashe et al., LHC signals for coset electroweak gauge bosons in warped/composite PGB Higgs models, Phys. Rev. D 81 (2010) 096002 [arXiv:0911.0059] [SPIRES].ADSGoogle Scholar
  155. [155]
    M. Carena, A.D. Medina, B. Panes, N.R. Shah and C.E.M. Wagner, Collider phenomenology of gauge-Higgs unification scenarios in warped extra dimensions, Phys. Rev. D 77 (2008) 076003 [arXiv:0712.0095] [SPIRES].ADSGoogle Scholar
  156. [156]
    R. Contino and G. Servant, Discovering the top partners at the LHC using same-sign dilepton final states, JHEP 06 (2008) 026 [arXiv:0801.1679] [SPIRES].ADSGoogle Scholar
  157. [157]
    J.A. Aguilar-Saavedra, Identifying top partners at LHC, JHEP 11 (2009) 030 [arXiv:0907.3155] [SPIRES].ADSGoogle Scholar
  158. [158]
    J. Mrazek and A. Wulzer, A strong sector at the LHC: top partners in same-sign dileptons, Phys. Rev. D 81 (2010) 075006 [arXiv:0909.3977] [SPIRES].ADSGoogle Scholar
  159. [159]
    K. Agashe, K. Blum, S.J. Lee and G. Perez, Astrophysical implications of a visible dark matter sector from a custodially warped-GUT, Phys. Rev. D 81 (2010) 075012 [arXiv:0912.3070] [SPIRES].ADSGoogle Scholar
  160. [160]
    G. Burdman, L. Da Rold and R.D. Matheus, The lepton sector of a fourth generation, arXiv:0912.5219 [SPIRES].

Copyright information

© SISSA, Trieste, Italy 2010

Authors and Affiliations

  • Francisco del Águila
    • 1
  • Adrián Carmona
    • 1
  • José Santiago
    • 1
    • 2
  1. 1.CAFPE and Departamento de Física Teórica y del CosmosUniversidad de GranadaGranadaSpain
  2. 2.Institute for Theoretical Physics, ETHZürichSwitzerland

Personalised recommendations