Advertisement

On domain walls in a Ginzburg-Landau non-linear S2-sigma model

  • A. Alonso IzquierdoEmail author
  • M. A. González León
  • J. Mateos Guilarte
  • M. de la Torre Mayado
Article

Abstract

The domain wall solutions of a Ginzburg-Landau non-linear \( {\mathbb{S}^2} \)-sigma hybrid model are unveiled. There are three types of basic topological walls and two types of degenerate families ouf composite -one topological, the other non-topological-walls. The domain wall solutions are identified as the finite action trajectories (in infinite time) of a related mechanical system that is Hamilton-Jacobi separable in sphero-conical coordinates. The physical and mathematical features of these domain walls are thoroughly discussed.

Keywords

Integrable Equations in Physics Solitons Monopoles and Instantons 

References

  1. [1]
    T.W.B. Kibble, Topology of cosmic domains and strings, J. Phys. A 9 (1976) 1387 [SPIRES].ADSGoogle Scholar
  2. [2]
    A. Vilenkin and E.P.S. Shellard, Cosmic strings and other topological defects, Cambridge University Press, Cambridge U.K. (1994).zbMATHGoogle Scholar
  3. [3]
    J.C.R.E. Oliveira, C.J.A.P. Martins and P.P. Avelino, The cosmological evolution of domain wall networks, Phys. Rev. D 71 (2005) 083509 [hep-ph/0410356] [SPIRES].ADSGoogle Scholar
  4. [4]
    M. Eto et al., Effective action of domain wall networks, Phys. Rev. D 75 (2007) 045010 [hep-th/0612003] [SPIRES].MathSciNetADSGoogle Scholar
  5. [5]
    M. Eto et al., Dynamics of domain wall networks, Phys. Rev. D 76 (2007) 125025 [arXiv:0707.3267] [SPIRES].MathSciNetADSGoogle Scholar
  6. [6]
    L. Randall and R. Sundrum, An alternative to compactification, Phys. Rev. Lett. 83 (1999) 4690 [hep-th/9906064] [SPIRES].zbMATHCrossRefMathSciNetADSGoogle Scholar
  7. [7]
    H.J. Boonstra, K. Skenderis and P.K. Townsend, The domain wall/QFT correspondence, JHEP 01 (1999) 003 [hep-th/9807137] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  8. [8]
    G. Lopes Cardoso, G. Dall’Agata and D. Lüst, Curved BPS domain walls and RG flow in five dimensions, JHEP 03 (2002) 044 [hep-th/0201270] [SPIRES].CrossRefADSGoogle Scholar
  9. [9]
    D. Bazeia and A.R. Gomes, Bloch brane, JHEP 05 (2004) 012 [hep-th/0403141] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  10. [10]
    D. Bazeia, F.A. Brito and L. Losano, Scalar fields, bent branes and RG flow, JHEP 11 (2006) 064 [hep-th/0610233] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  11. [11]
    A. de Souza Dutra, A.C.A. de Faria Jr. and M. Hott, Degenerate and critical Bloch branes, Phys. Rev. D 78 (2008) 043526 [arXiv:0807.0586] [SPIRES].ADSGoogle Scholar
  12. [12]
    J.J. Blanco-Pillado, M. Bucher, S. Ghassemi and F. Glanois, When do colliding bubbles produce an expanding universe?, Phys. Rev. D 69 (2004) 103515 [hep-th/0306151] [SPIRES]. ADSGoogle Scholar
  13. [13]
    M. Gell-Mann and M. Lèvy, The axial vector current in beta decay, Nuovo Cim. 16 (1960) 705 [SPIRES].zbMATHCrossRefGoogle Scholar
  14. [14]
    M. Veltman, Reflections on the Higgs system, CERN Yellow Report 97-05, Cern, Switzerland (1997) [SPIRES]. Google Scholar
  15. [15]
    A. Alonso-Izquierdo, M.A. González León and J. Mateos Guilarte, Kinks in a non-linear massive sigma-model, Phys. Rev. Lett. 101 (2008) 131602 [arXiv:0808.3052] [SPIRES].CrossRefADSGoogle Scholar
  16. [16]
    E.R.C. Abraham and P.K. Townsend, Q kinks, Phys. Lett. B 291 (1992) 85 [SPIRES].MathSciNetADSGoogle Scholar
  17. [17]
    E.R.C. Abraham and P.K. Townsend, More on Q kinks: a (1+ 1)-dimensional analog of dyons, Phys. Lett. B 295 (1992) 225 [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  18. [18]
    M. Arai, M. Naganuma, M. Nitta and N. Sakai, Manifest supersymmetry for BPS walls in \( \mathcal{N} = 2 \) nonlinear sigma-models, Nucl. Phys. B 652 (2003) 35 [hep-th/0211103] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  19. [19]
    N. Dorey, The BPS spectra of two-dimensional supersymmetric gauge theories with twisted mass terms, JHEP 11 (1998) 005 [hep-th/9806056] [SPIRES].ADSGoogle Scholar
  20. [20]
    R.A. Leese, Q lumps and their interactions, Nucl. Phys. B 366 (1991) 283 [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  21. [21]
    E. Abraham, Nonlinear sigma-models and their Q lump solutions, Phys. Lett. B 278 (1992) 291 [SPIRES].MathSciNetADSGoogle Scholar
  22. [22]
    J.P. Gauntlett, R. Portugues, D. Tong and P.K. Townsend, D-brane solitons in supersymmetric sigma-models, Phys. Rev. D 63 (2001) 085002 [hep-th/0008221] [SPIRES].MathSciNetADSGoogle Scholar
  23. [23]
    Y. Isozumi, M. Nitta, K. Ohashi and N. Sakai, Construction of non-Abelian walls and their complete moduli space, Phys. Rev. Lett. 93 (2004) 161601 [hep-th/0404198] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  24. [24]
    M. Eto, Y. Isozumi, M. Nitta, K. Ohashi and N. Sakai, Solitons in the Higgs phase: the moduli matrix approach, J. Phys. A 39 (2006) R315 [hep-th/0602170] [SPIRES].MathSciNetADSGoogle Scholar
  25. [25]
    C. Neumann, De problemate quodam mechanico, quod ad primam integralium ultraelipticorum classem revocatur (in Latin), J. Reine Angew. Math. 56 (1859) 46.zbMATHGoogle Scholar
  26. [26]
    J. Moser, Various aspects of integrable Hamiltonian systems, in Dynamical systems, C.I.M.E. Summer School, Bressanone Italy 1978, Progr. Math. 8, Birkhäuser, Boston U.S.A. (1980), pg. 233.Google Scholar
  27. [27]
    B.A. Dubrovin, Theta functions and non-linear equations, Russ. Math. Surveys 36 (1981) 11. CrossRefMathSciNetADSGoogle Scholar
  28. [28]
    P. Deligne and D. Freed, Classical field theory, in Quantum fields and strings: a course for mathematicians, volume 1, chapter 5, American Mathematical Society, U.S.A. (1999), pg. 211.Google Scholar
  29. [29]
    R. Rajaraman, Solitons and instantons, North-Holland, Amsterdam The Netherlands (1982).zbMATHGoogle Scholar
  30. [30]
    A.A. Izquierdo, M.A. González León and J. Mateos Guilarte, BPS and non-BPS kinks in a massive non-linear \( {\mathbb{S}^2} \) -sigma-model, Phys. Rev. D 79 (2009) 125003 [arXiv:0903.0593] [SPIRES]. ADSGoogle Scholar
  31. [31]
    E.B. Bogomolny, Stability of classical solutions, Sov. J. Nucl. Phys. 24 (1976) 449 [Yad. Fiz. 24 (1976) 861] [SPIRES]. Google Scholar
  32. [32]
    H. Ito and H. Tasaki, Stability theory for nonlinear Klein-Gordon kinks and Morse’s index theorem, Phys. Lett. A 113 (1985) 179 [SPIRES].MathSciNetADSGoogle Scholar
  33. [33]
    J. Mateos Guilarte, Stationary phase approximation and quantum soliton families, Annals Phys. 188 (1988) 307 [SPIRES].zbMATHCrossRefMathSciNetADSGoogle Scholar
  34. [34]
    A. Alonso Izquierdo, M.A. González León and J. Mateos Guilarte, Stability of kink defects in a deformed O(3) linear sigma model, Nonlinearity 15 (2002) 1097 [math-ph/0204041] [SPIRES].zbMATHCrossRefMathSciNetADSGoogle Scholar
  35. [35]
    C. Mayrhofer, A. Rebhan, P. van Nieuwenhuizen and R. Wimmer, Perturbative quantum corrections to the supersymmetric CP 1 kink with twisted mass, JHEP 09 (2007) 069 [arXiv:0706.4476] [SPIRES].CrossRefADSGoogle Scholar
  36. [36]
    A. Alonso-Izquierdo, M.A. González León, J. Mateos Guilarte and M.J. Senosiain, On the semiclassical mass of \( {\mathbb{S}^2} \) -kinks, J. Phys. A 42 (2009) 385403 [arXiv:0906.1258] [SPIRES].ADSGoogle Scholar
  37. [37]
    A.A. Izquierdo, M.A. González León, J.M. Guilarte and M.J. Senosiain, Quantum fluctuations of topological \( {\mathbb{S}^3} \) -kinks, in Proceedings of QFEXT09, Norman Oklahoma U.S.A. September 21–25 2009, to be published, World Scientific, Singapore (2010) [arXiv:0911.2588] [SPIRES].
  38. [38]
    A. Alonso Izquierdo, W. Garcia Fuertes, M.A. González León and J. Mateos Guilarte, Semi-classical mass of quantum k-component topological kinks, Nucl. Phys. B 638 (2002) 378 [hep-th/0205137] [SPIRES].CrossRefADSGoogle Scholar
  39. [39]
    A. Alonso Izquierdo, W. Garcia Fuertes, M.A. González León and J. Mateos Guilarte, Generalized zeta functions and one-loop corrections to quantum kink masses, Nucl. Phys. B 635 (2002) 525 [hep-th/0201084] [SPIRES].CrossRefADSGoogle Scholar
  40. [40]
    A. Alonso Izquierdo, W. Garcia Fuertes, M.A. González León and J. Mateos Guilarte, One-loop correction to classical masses of quantum kink families, Nucl. Phys. B 681 (2004) 163 [hep-th/0304125] [SPIRES].CrossRefADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2010

Authors and Affiliations

  • A. Alonso Izquierdo
    • 1
    • 3
    Email author
  • M. A. González León
    • 1
    • 3
  • J. Mateos Guilarte
    • 2
    • 3
  • M. de la Torre Mayado
    • 2
    • 3
  1. 1.Departamento de Matemática AplicadaUniversidad de SalamancaSalamancaSpain
  2. 2.Departamento de Física FundamentalUniversidad de SalamancaSalamancaSpain
  3. 3.IUFFyM, Universidad de SalamancaSalamancaSpain

Personalised recommendations