Deformed quantum cohomology and (0,2) mirror symmetry

Article

Abstract

We compute instanton corrections to correlators in the genus-zero topological subsector of a (0, 2) supersymmetric gauged linear sigma model with target space \( {\mathbb{P}^1} \times {\mathbb{P}^1} \), whose left-moving fermions couple to a deformation of the tangent bundle. We then deduce the theory’s chiral ring from these correlators, which reduces in the limit of zero deformation to the (2, 2) ring. Finally, we compare our results with the computations carried out by Adams et al. [1] and Katz and Sharpe [17]. We find immediate agreement with the latter and an interesting puzzle in completely matching the chiral ring of the former.

Keywords

Superstrings and Heterotic Strings Topological Field Theories 

References

  1. [1]
    A. Adams, A. Basu and S. Sethi, (0, 2) duality, Adv. Theor. Math. Phys. 7 (2004) 865 [hep-th/0309226] [SPIRES].MathSciNetGoogle Scholar
  2. [2]
    A. Adams, J. Distler and M. Ernebjerg, Topological heterotic rings, Adv. Theor. Math. Phys. 10 (2006) 657 [hep-th/0506263] [SPIRES].MATHMathSciNetGoogle Scholar
  3. [3]
    P.S. Aspinwall and D.R. Morrison, Topological field theory and rational curves, Commun. Math. Phys. 151 (1993) 245 [hep-th/9110048] [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar
  4. [4]
    P. Berglund et al., On the instanton contributions to the masses and couplings of E 6 singlets, Nucl. Phys. B 454 (1995) 127 [hep-th/9505164] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  5. [5]
    V. Batyrev and D. Cox, On the Hodge structure of projective hypersurfaces in toric varieties, Duke Math. J. 75 (994) 293 [alg-geom/9306011]. CrossRefMathSciNetGoogle Scholar
  6. [6]
    A. Basu and S. Sethi, World-sheet stability of (0, 2) linear σ-models, Phys. Rev. D 68 (2003) 025003 [hep-th/0303066] [SPIRES].MathSciNetADSGoogle Scholar
  7. [7]
    C. Beasley and E. Witten, Residues and world-sheet instantons, JHEP 10 (2003) 065 [hep-th/0304115] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  8. [8]
    Z. Chen, A BLAS based C library for exact linear algebra on integer matrices, Master’s thesis, David R. Cheriton School of Computer Science, University of Waterloo, Waterloo, Canada (2005).Google Scholar
  9. [9]
    D. Cox, The homogeneous coordinate ring of a toric variety, J. Alg. Geom. 4 (1995) 17 [alg-geom/9210008]. MATHGoogle Scholar
  10. [10]
    Z. Chen and A. Storjohann, A BLAS based C library for exact linear algebra on integer matrices, in the proceedings of the International Symposium on Symbolic and Algebraic Computation (ISAAC 05), M. Kauers ed., ACM Press, New York U.S.A. (2005).Google Scholar
  11. [11]
    J. Distler and B.R. Greene, Aspects of (2, 0) string compactifications, Nucl. Phys. B 304 (1988) 1 [SPIRES]. CrossRefMathSciNetADSGoogle Scholar
  12. [12]
    J. Distler, B.R. Greene and D.R. Morrison, Resolving singularities in (0,2) models, Nucl. Phys. B 481 (1996) 289 [hep-th/9605222] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  13. [13]
    J. Distler, Resurrecting (2, 0) compactifications, Phys. Lett. B 188 (1987) 431. MathSciNetADSGoogle Scholar
  14. [14]
    J. Distler and S. Kachru, (0, 2) Landau-Ginzburg theory, Nucl. Phys. B 413 (1994) 213 [hep-th/9309110] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  15. [15]
    M. Dine, N. Seiberg, X.G. Wen and E. Witten, Nonperturbative effects on the string world sheet, Nucl. Phys. B 278 (1986) 769. CrossRefMathSciNetADSGoogle Scholar
  16. [16]
    M. Dine, N. Seiberg, X.G. Wen and E. Witten, Nonperturbative effects on the string world sheet. II, Nucl. Phys. B 289 (1987) 319. CrossRefMathSciNetADSGoogle Scholar
  17. [17]
    S.H. Katz and E. Sharpe, Notes on certain (0, 2) correlation functions, Commun. Math. Phys. 262 (2006) 611 [hep-th/0406226] [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar
  18. [18]
    W. Lerche, C. Vafa and N.P. Warner, Chiral rings in n = 2 superconformal theories, Nucl. Phys. B 324 (1989) 427. CrossRefMathSciNetADSGoogle Scholar
  19. [19]
    Wolfram Research, Mathematica Edition: Version 5.2, Wolfram Research, Inc., Champaign, Illinois U.S.A. (2005).Google Scholar
  20. [20]
    D.R. Morrison and M. Ronen Plesser, Summing the instantons: quantum cohomology and mirror symmetry in toric varieties, Nucl. Phys. B 440 (1995) 279 [hep-th/9412236] [SPIRES]. CrossRefADSGoogle Scholar
  21. [21]
    S. Sethi, private communication (2007).Google Scholar
  22. [22]
    E. Sharpe, Notes on correlation functions in (0, 2) theories, hep-th/0502064 [SPIRES].
  23. [23]
    E. Sharpe, Notes on certain other (0, 2) correlation functions, Adv. Theor. Math. Phys. 13 (2009) 33 [hep-th/0605005] [SPIRES].MATHMathSciNetGoogle Scholar
  24. [24]
    E. Silverstein and E. Witten, Criteria for conformal invariance of (0, 2) models, Nucl. Phys. B 444 (1995) 161 [hep-th/9503212] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  25. [25]
    M.-C. Tan, Two-dimensional twisted σ-models and the theory of chiral differential operators, Adv. Theor. Math. Phys. 10 (2006) 759 [hep-th/0604179] [SPIRES].MATHMathSciNetGoogle Scholar
  26. [26]
    E. Witten, Topological σ-models, Commun. Math. Phys. 118 (1988) 411 [SPIRES]. MATHCrossRefMathSciNetADSGoogle Scholar
  27. [27]
    E. Witten, On the structure of the topological phase of two-dimensional gravity, Nucl. Phys. B 340 (1990) 281 [SPIRES]. CrossRefMathSciNetADSGoogle Scholar
  28. [28]
    E. Witten, Phases of N = 2 theories in two dimensions, Nucl. Phys. B 403 (1993) 159 [hep-th/9301042] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  29. [29]
    E. Witten, Two-dimensional models with (0, 2) supersymmetry: perturbative aspects, hep-th/0504078 [SPIRES].

Copyright information

© SISSA, Trieste, Italy 2010

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of Illinois at Urbana-ChampaignUrbanaU.S.A.
  2. 2.Department of MathematicsUniversity of IllinoisUrbanaU.S.A.

Personalised recommendations