Light MSSM Higgs boson mass to three-loop accuracy

  • P. Kant
  • R. V. Harlander
  • L. Mihaila
  • M. Steinhauser
Article

Abstract

The light CP even Higgs boson mass, Mh, is calculated to three-loop accuracy within the Minimal Supersymmetric Standard Model (MSSM). The result is expressed in terms of \( \overline {\text{DR}} \) parameters and implemented in the computer program H3m. The calculation is based on the proper approximations and their combination in various regions of the parameter space. The three-loop effects to Mh are typically of the order of a few hundred MeV and opposite in sign to the two-loop corrections. The remaining theory uncertainty due to higher order perturbative corrections is estimated to be less than 1 GeV.

Keywords

Higgs Physics Supersymmetric Standard Model QCD 

References

  1. [1]
    H.P. Nilles, Supersymmetry, supergravity and particle physics, Phys. Rept. 110 (1984) 1 [SPIRES].CrossRefADSGoogle Scholar
  2. [2]
    H.E. Haber and G.L. Kane, The search for supersymmetry: probing physics beyond the standard model, Phys. Rept. 117 (1985) 75 [SPIRES].CrossRefADSGoogle Scholar
  3. [3]
    S. Heinemeyer, W. Hollik and G. Weiglein, Electroweak precision observables in the minimal supersymmetric standard model, Phys. Rept. 425 (2006) 265 [hep-ph/0412214] [SPIRES].CrossRefADSGoogle Scholar
  4. [4]
    J.R. Ellis, G. Ridolfi and F. Zwirner, Radiative corrections to the masses of supersymmetric Higgs bosons, Phys. Lett. B 257 (1991) 83 [SPIRES].ADSGoogle Scholar
  5. [5]
    J.R. Ellis, G. Ridolfi and F. Zwirner, On radiative corrections to supersymmetric Higgs boson masses and their implications for LEP searches, Phys. Lett. B 262 (1991) 477 [SPIRES].ADSGoogle Scholar
  6. [6]
    Y. Okada, M. Yamaguchi and T. Yanagida, Upper bound of the lightest Higgs boson mass in the minimal supersymmetric standard model, Prog. Theor. Phys. 85 (1991) 1 [SPIRES].CrossRefADSGoogle Scholar
  7. [7]
    H.E. Haber and R. Hempfling, Can the mass of the lightest Higgs boson of the minimal supersymmetric model be larger than m Z ?, Phys. Rev. Lett. 66 (1991) 1815 [SPIRES].CrossRefADSGoogle Scholar
  8. [8]
    S. Heinemeyer, MSSM Higgs physics at higher orders, Int. J. Mod. Phys. A 21 (2006) 2659 [hep-ph/0407244] [SPIRES].ADSGoogle Scholar
  9. [9]
    B.C. Allanach, A. Djouadi, J.L. Kneur, W. Porod and P. Slavich, Precise determination of the neutral Higgs boson masses in the MSSM, JHEP 09 (2004) 044 [hep-ph/0406166] [SPIRES].CrossRefADSGoogle Scholar
  10. [10]
    M. Frank et al., The Higgs boson masses and mixings of the complex MSSM in the Feynman-diagrammatic approach, JHEP 02 (2007) 047 [hep-ph/0611326] [SPIRES].CrossRefADSGoogle Scholar
  11. [11]
    S. Heinemeyer, W. Hollik, H. Rzehak and G. Weiglein, The Higgs sector of the complex MSSM at two-loop order: QCD contributions, Phys. Lett. B 652 (2007) 300 [arXiv:0705.0746] [SPIRES].ADSGoogle Scholar
  12. [12]
    M.S. Carena, J.R. Ellis, A. Pilaftsis and C.E.M. Wagner, Renormalization-group-improved effective potential for the MSSM Higgs sector with explicit CP-violation, Nucl. Phys. B 586 (2000) 92 [hep-ph/0003180] [SPIRES].CrossRefADSGoogle Scholar
  13. [13]
    S.P. Martin, Complete two-loop effective potential approximation to the lightest Higgs scalar boson mass in supersymmetry, Phys. Rev. D 67 (2003) 095012 [hep-ph/0211366] [SPIRES].ADSGoogle Scholar
  14. [14]
    S.P. Martin, Three-loop corrections to the lightest Higgs scalar boson mass in supersymmetry, Phys. Rev. D 75 (2007) 055005 [hep-ph/0701051] [SPIRES].ADSGoogle Scholar
  15. [15]
    R.V. Harlander, P. Kant, L. Mihaila and M. Steinhauser, Higgs boson mass in supersymmetry to three loops, Phys. Rev. Lett. 100 (2008) 191602 [Erratum ibid. 101 (2008) 039901] [arXiv:0803.0672] [SPIRES].CrossRefADSGoogle Scholar
  16. [16]
    S. Heinemeyer, W. Hollik and G. Weiglein, FeynHiggs: a program for the calculation of the masses of the neutral CP-even Higgs bosons in the MSSM, Comput. Phys. Commun. 124 (2000) 76 [hep-ph/9812320] [SPIRES].MATHCrossRefADSGoogle Scholar
  17. [17]
    G. Degrassi, S. Heinemeyer, W. Hollik, P. Slavich and G. Weiglein, Towards high-precision predictions for the MSSM Higgs sector, Eur. Phys. J. C 28 (2003) 133 [hep-ph/0212020] [SPIRES].ADSGoogle Scholar
  18. [18]
    S. Heinemeyer, W. Hollik and G. Weiglein, The masses of the neutral CP-even Higgs bosons in the MSSM: accurate analysis at the two loop level, Eur. Phys. J. C 9 (1999) 343 [hep-ph/9812472] [SPIRES].ADSGoogle Scholar
  19. [19]
    T. Hahn, S. Heinemeyer, W. Hollik, H. Rzehak and G. Weiglein, FeynHiggs: a program for the calculation of MSSM Higgs-boson observables — version 2.6.5, Comput. Phys. Commun. 180 (2009) 1426 [SPIRES].MATHCrossRefADSGoogle Scholar
  20. [20]
    J.S. Lee et al., CPsuperH: a computational tool for Higgs phenomenology in the minimal supersymmetric standard model with explicit CP-violation, Comput. Phys. Commun. 156 (2004) 283 [hep-ph/0307377] [SPIRES].CrossRefADSGoogle Scholar
  21. [21]
    J.S. Lee, M. Carena, J. Ellis, A. Pilaftsis and C.E.M. Wagner, CPsuperH2.0: an improved computational tool for Higgs phenomenology in the MSSM with explicit CP-violation, Comput. Phys. Commun. 180 (2009) 312 [arXiv:0712.2360] [SPIRES].CrossRefADSGoogle Scholar
  22. [22]
    B.C. Allanach et al., The Snowmass points and slopes: benchmarks for SUSY searches, in Proceedings of the APS/DPF/DPB summer study on the future of particle physics (Snowmass 2001), N. Graf ed., Eur. Phys. J. C 25 (2002) 113 [hep-ph/0202233] [SPIRES].CrossRefADSGoogle Scholar
  23. [23]
    J.A. Aguilar-Saavedra et al., Supersymmetry parameter analysis: SPA convention and project, Eur. Phys. J. C 46 (2006) 43 [hep-ph/0511344] [SPIRES].CrossRefADSGoogle Scholar
  24. [24]
    P. Kant, R.V. Harlander, L. Mihaila and M. Steinhauser, Results for the paper: “Light MSSM Higgs boson mass to three-loop accuracy”, http://www-ttp.particle.uni-karlsruhe.de/Progdata/ttp10/ttp10-23/.
  25. [25]
    FeynHiggs: overview, http://www.feynhiggs.de/.
  26. [26]
    P.H. Chankowski, S. Pokorski and J. Rosiek, Charged and neutral supersymmetric Higgs boson masses: complete one loop analysis, Phys. Lett. B 274 (1992) 191 [SPIRES].ADSGoogle Scholar
  27. [27]
    A. Brignole, Radiative corrections to the supersymmetric neutral Higgs boson masses, Phys. Lett. B 281 (1992) 284 [SPIRES].ADSGoogle Scholar
  28. [28]
    A. Dabelstein, The one loop renormalization of the MSSM Higgs sector and its application to the neutral scalar Higgs masses, Z. Phys. C 67 (1995) 495 [hep-ph/9409375] [SPIRES].ADSGoogle Scholar
  29. [29]
    G. Degrassi, P. Slavich and F. Zwirner, On the neutral Higgs boson masses in the MSSM for arbitrary stop mixing, Nucl. Phys. B 611 (2001) 403 [hep-ph/0105096] [SPIRES].CrossRefADSGoogle Scholar
  30. [30]
    B.C. Allanach, SOFTSUSY: a program for calculating supersymmetric spectra, Comput. Phys. Commun. 143 (2002) 305 [hep-ph/0104145] [SPIRES].MATHCrossRefADSGoogle Scholar
  31. [31]
    Y. Schröder and M. Steinhauser, Four-loop singlet contribution to the ρ parameter, Phys. Lett. B 622 (2005) 124 [hep-ph/0504055] [SPIRES].ADSGoogle Scholar
  32. [32]
    K.G. Chetyrkin, M. Faisst, J.H. Kühn, P. Maierhöfer and C. Sturm, Four-loop QCD corrections to the ρ parameter, Phys. Rev. Lett. 97 (2006) 102003 [hep-ph/0605201] [SPIRES].CrossRefADSGoogle Scholar
  33. [33]
    R. Boughezal and M. Czakon, Single scale tadpoles and \( \mathcal{O}\left( {{G_F}m_t^2\alpha_s^3} \right) \) corrections to the ρ parameter, Nucl. Phys. B 755 (2006) 221 [hep-ph/0606232] [SPIRES].CrossRefADSGoogle Scholar
  34. [34]
    P. Nogueira, Automatic Feynman graph generation, J. Comput. Phys. 105 (1993) 279 [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar
  35. [35]
    R.V. Harlander, L. Mihaila and M. Steinhauser, The SUSY -QCD β-function to three loops, Eur. Phys. J. C 63 (2009) 383 [arXiv:0905.4807] [SPIRES].CrossRefADSGoogle Scholar
  36. [36]
    A. Denner, H. Eck, O. Hahn and J. Küblbeck, Feynman rules for fermion number violating interactions, Nucl. Phys. B 387 (1992) 467 [SPIRES].CrossRefADSGoogle Scholar
  37. [37]
    J.A.M. Vermaseren, New features of FORM, math-ph/0010025 [SPIRES].
  38. [38]
    R. Harlander, T. Seidensticker and M. Steinhauser, Corrections of O(αα s ) to the decay of the Z boson into bottom quarks, Phys. Lett. B 426 (1998) 125 [hep-ph/9712228] [SPIRES].ADSGoogle Scholar
  39. [39]
    T. Seidensticker, Automatic application of successive asymptotic expansions of Feynman diagrams, hep-ph/9905298 [SPIRES].
  40. [40]
    V.A. Smirnov, Applied asymptotic expansions in momenta and masses, Springer Tracts Mod. Phys. 177 (2002) 1 [SPIRES].CrossRefADSGoogle Scholar
  41. [41]
    M. Steinhauser, MATAD: a program package for the computation of massive tadpoles, Comput. Phys. Commun. 134 (2001) 335 [hep-ph/0009029] [SPIRES].MATHCrossRefADSGoogle Scholar
  42. [42]
    P.Z. Skands et al., SUSY Les Houches accord: interfacing SUSY spectrum calculators, decay packages and event generators, JHEP 07 (2004) 036 [hep-ph/0311123] [SPIRES].CrossRefADSGoogle Scholar
  43. [43]
    A. Djouadi, J.-L. Kneur and G. Moultaka, SuSpect: a fortran code for the supersymmetric and Higgs particle spectrum in the MSSM, Comput. Phys. Commun. 176 (2007) 426 [hep-ph/0211331] [SPIRES].MATHCrossRefADSGoogle Scholar
  44. [44]
    W. Porod, SPheno, a program for calculating supersymmetric spectra, SUSY particle decays and SUSY particle production at e + e colliders, Comput. Phys. Commun. 153 (2003) 275 [hep-ph/0301101] [SPIRES].CrossRefADSGoogle Scholar
  45. [45]
    S.P. Martin, Fermion self-energies and pole masses at two-loop order in a general renormalizable theory with massless gauge bosons, Phys. Rev. D 72 (2005) 096008 [hep-ph/0509115] [SPIRES].ADSGoogle Scholar
  46. [46]
    S.P. Martin and D.G. Robertson, TSIL: a program for the calculation of two-loop self-energy integrals, Comput. Phys. Commun. 174 (2006) 133 [hep-ph/0501132] [SPIRES].MATHCrossRefADSGoogle Scholar
  47. [47]
    Tevatron Electroweak Working Group collaboration, Combination of CDF and D0 results on the mass of the top quark, arXiv:0903.2503 [SPIRES].
  48. [48]
    R. Harlander, L. Mihaila and M. Steinhauser, Two-loop matching coefficients for the strong coupling in the MSSM, Phys. Rev. D 72 (2005) 095009 [hep-ph/0509048] [SPIRES].ADSGoogle Scholar
  49. [49]
    R.V. Harlander, L. Mihaila and M. Steinhauser, Running of α s and m b in the MSSM, Phys. Rev. D 76 (2007) 055002 [arXiv:0706.2953] [SPIRES].ADSGoogle Scholar
  50. [50]
    A. Bauer, L. Mihaila and J. Salomon, Matching coefficients for α s and m b to O(α s 2 ) in the MSSM, JHEP 02 (2009) 037 [arXiv:0810.5101] [SPIRES].CrossRefADSGoogle Scholar
  51. [51]
    S. Bethke, The 2009 world average of α s(M Z), Eur. Phys. J. C 64 (2009) 689 [arXiv:0908.1135] [SPIRES].CrossRefADSGoogle Scholar
  52. [52]
    T. van Ritbergen, J.A.M. Vermaseren and S.A. Larin, The four-loop β-function in quantum chromodynamics, Phys. Lett. B 400 (1997) 379 [hep-ph/9701390] [SPIRES].ADSGoogle Scholar
  53. [53]
    M. Czakon, The four-loop QCD β-function and anomalous dimensions, Nucl. Phys. B 710 (2005) 485 [hep-ph/0411261] [SPIRES].CrossRefADSGoogle Scholar
  54. [54]
    I. Jack, D.R.T. Jones and C.G. North, N = 1 supersymmetry and the three loop gauge β-function, Phys. Lett. B 386 (1996) 138 [hep-ph/9606323] [SPIRES].ADSGoogle Scholar
  55. [55]
    M.S. Carena, S. Heinemeyer, C.E.M. Wagner and G. Weiglein, Suggestions for benchmark scenarios for MSSM Higgs boson searches at hadron colliders, Eur. Phys. J. C 26 (2003) 601 [hep-ph/0202167] [SPIRES].ADSGoogle Scholar
  56. [56]
    M.S. Carena et al., Reconciling the two-loop diagrammatic and effective field theory computations of the mass of the lightest CP-even Higgs boson in the MSSM, Nucl. Phys. B 580 (2000) 29 [hep-ph/0001002] [SPIRES].CrossRefADSGoogle Scholar
  57. [57]
    I. Jack, D.R.T. Jones, S.P. Martin, M.T. Vaughn and Y. Yamada, Decoupling of the ϵ scalar mass in softly broken supersymmetry, Phys. Rev. D 50 (1994) 5481 [hep-ph/9407291] [SPIRES]. ADSGoogle Scholar
  58. [58]
    S.P. Martin, Two-loop effective potential for a general renormalizable theory and softly broken supersymmetry, Phys. Rev. D 65 (2002) 116003 [hep-ph/0111209] [SPIRES].ADSGoogle Scholar
  59. [59]
    I. Jack and D.R.T. Jones, Soft supersymmetry breaking and finiteness, Phys. Lett. B 333 (1994) 372 [hep-ph/9405233] [SPIRES].ADSGoogle Scholar
  60. [60]
    Y. Yamada, Two loop renormalization group equations for soft SUSY breaking scalar interactions: supergraph method, Phys. Rev. D 50 (1994) 3537 [hep-ph/9401241] [SPIRES].ADSGoogle Scholar
  61. [61]
    S.P. Martin and M.T. Vaughn, Two loop renormalization group equations for soft supersymmetry breaking couplings, Phys. Rev. D 50 (1994) 2282 [Erratum ibid. D 78 (2008) 039903] [hep-ph/9311340] [SPIRES].ADSGoogle Scholar
  62. [62]
    D.R.T. Jones and L. Mezincescu, The β-function in supersymmetric Yang-Mills theory, Phys. Lett. B 136 (1984) 242 [SPIRES].ADSGoogle Scholar
  63. [63]
    D.R.T. Jones and L. Mezincescu, The chiral anomaly and a class of two loop finite supersymmetric gauge theories, Phys. Lett. B 138 (1984) 293 [SPIRES].ADSGoogle Scholar
  64. [64]
    A.J. Parkes and P.C. West, Three loop results in two loop finite supersymmetric gauge theories, Nucl. Phys. B 256 (1985) 340 [SPIRES].CrossRefADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2010

Authors and Affiliations

  • P. Kant
    • 1
  • R. V. Harlander
    • 2
  • L. Mihaila
    • 3
  • M. Steinhauser
    • 3
  1. 1.Institut für PhysikHumboldt-Universität zu BerlinBerlinGermany
  2. 2.Fachbereich CUniversität WuppertalWuppertalGermany
  3. 3.Institut für Theoretische TeilchenphysikKarlsruhe Institute of Technology (KIT)KarlsruheGermany

Personalised recommendations