Advertisement

Non-perturbative renormalization of quark mass in N f = 2 + 1 QCD with the Schrödinger functional scheme

  • PACS-CS collaboration
  • S. Aoki
  • K.-I. Ishikawa
  • N. Ishizuka
  • T. Izubuchi
  • K. Kanaya
  • Y. Kuramashi
  • K. Murano
  • Y. Namekawa
  • M. Okawa
  • Y. TaniguchiEmail author
  • A. Ukawa
  • N. Ukita
  • T. Yoshié
Article

Abstract

We present an evaluation of the quark mass renormalization factor for N f = 2 + 1 QCD. The Schrödinger functional scheme is employed as the intermediate scheme to carry out non-perturbative running from the low energy region, where renormalization of bare mass is performed on the lattice, to deep in the high energy perturbative region, where the conversion to the renormalization group invariant mass or the \( \overline {\text{MS}} \) scheme is safely carried out. For numerical simulations we adopted the Iwasaki gauge action and nonperturbatively improved Wilson fermion action with the clover term. Seven renormalization scales are used to cover from low to high energy regions and three lattice spacings to take the continuum limit at each scale. The regularization independent step scaling function of the quark mass for the N f = 2 + 1 QCD is obtained in the continuum limit. Renormalization factors for the pseudo scalar density and the axial vector current are also evaluated for the same action and the bare couplings as two recent large scale N f = 2 + 1 simulations; previous work of the CP -PACS/JLQCD collaboration, which covered the up-down quark mass range heavier than m π ∼ 500 MeV and that of PACS-CS collaboration for much lighter quark masses down to m π = 155MeV. The quark mass renormalization factor is used to renormalize bare PCAC masses in these simulations.

Keywords

Lattice Gauge Field Theories Renormalization Regularization and Renormalons Renormalization Group 

References

  1. [1]
    M. Lüscher, R. Narayanan, P. Weisz and U. Wolff, The Schrödinger functional: A renormalizable probe for nonAbelian gauge theories, Nucl. Phys. B 384 (1992) 168 [hep-lat/9207009] [SPIRES].CrossRefADSGoogle Scholar
  2. [2]
    M. Lüscher, R. Sommer, P. Weisz and U. Wolff, A precise determination of the running coupling in the SU(3) Yang-Mills theory, Nucl. Phys. B 413 (1994) 481 [hep-lat/9309005] [SPIRES].CrossRefADSGoogle Scholar
  3. [3]
    S. Sint, On the Schrödinger functional in QCD, Nucl. Phys. B 421 (1994) 135 [hep-lat/9312079] [SPIRES].CrossRefADSGoogle Scholar
  4. [4]
    M. Lüscher, S. Sint, R. Sommer and P. Weisz, Chiral symmetry and O(a) improvement in lattice QCD, Nucl. Phys. B 478 (1996) 365 [hep-lat/9605038] [SPIRES].CrossRefADSGoogle Scholar
  5. [5]
    S. Capitani, M. Lüscher, R. Sommer and H. Wittig, Non-perturbative quark mass renormalization in quenched lattice QCD, Nucl. Phys. B 544 (1999) 669 [hep-lat/9810063] [SPIRES].CrossRefADSGoogle Scholar
  6. [6]
    S. Sint, Non-perturbative renormalization in lattice field theory, Nucl. Phys. Proc. Suppl. 94 (2001) 79 [hep-lat/0011081] [SPIRES].CrossRefADSGoogle Scholar
  7. [7]
    ALPHA collaboration, M. Della Morte et al., Computation of the strong coupling in QCD with two dynamical flavours, Nucl. Phys. B 713 (2005) 378 [hep-lat/0411025] [SPIRES].CrossRefADSGoogle Scholar
  8. [8]
    ALPHA collaboration, M. Della Morte et al., Non-perturbative quark mass renormalization in two-flavor QCD, Nucl. Phys. B 729 (2005) 117 [hep-lat/0507035] [SPIRES].CrossRefADSGoogle Scholar
  9. [9]
    PACS-CS collaboration, S. Aoki et al., Precise determination of the strong coupling constant in Nf=2 + 1 lattice QCD with the Schrödinger functional scheme, JHEP 10 (2009) 053 [arXiv:0906.3906] [SPIRES].Google Scholar
  10. [10]
    ALPHA collaboration, F. Tekin, R. Sommer and U. Wolff, The running coupling of QCD with four flavors, arXiv:1006.0672 [SPIRES].
  11. [11]
    JLQCD collaboration, T. Ishikawa et al., Light quark masses from unquenched lattice QCD, Phys. Rev. D 78 (2008) 011502 [arXiv:0704.1937] [SPIRES].ADSGoogle Scholar
  12. [12]
    PACS-CS collaboration, S. Aoki et al., 2+1 flavor lattice QCD toward the physical point, Phys. Rev. D 79 (2009) 034503 [arXiv:0807.1661] [SPIRES].ADSGoogle Scholar
  13. [13]
    PACS-CS collaboration, S. Aoki et al., Physical point simulation in 2+1 flavor lattice QCD, Phys. Rev. D 81 (2010) 074503 [arXiv:0911.2561] [SPIRES].ADSGoogle Scholar
  14. [14]
    ALPHA collaboration, A. Bode, P. Weisz and U. Wolff, Two loop computation of the Schroedinger functional in lattice QCD, Nucl. Phys. B 576 (2000) 517 [Erratum ibid. B 600 (2001) 453] [Erratum ibid. B 608 (2001) 481] [hep-lat/9911018] [SPIRES].CrossRefADSGoogle Scholar
  15. [15]
    M. Lüscher, S. Sint, R. Sommer and H. Wittig, Non-perturbative determination of the axial current normalization constant in O(a) improved lattice QCD, Nucl. Phys. B 491 (1997) 344 [hep-lat/9611015] [SPIRES].CrossRefADSGoogle Scholar
  16. [16]
    M. Della Morte, R. Hoffmann, F. Knechtli, R. Sommer and U. Wolff, Non-perturbative renormalization of the axial current with dynamical Wilson fermions, JHEP 07 (2005) 007 [hep-lat/0505026] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  17. [17]
    S. Takeda, S. Aoki and K. Ide, A perturbative determination of O(a) boundary improvement coefficients for the Schroedinger functional coupling at 1-loop with improved gauge actions, Phys. Rev. D 68 (2003) 014505 [hep-lat/0304013] [SPIRES].ADSGoogle Scholar
  18. [18]
    CP-PACS collaboration, S. Aoki et al., Nonperturbative O(a) improvement of the Wilson quark action with the RG-improved gauge action using the Schroedinger functional method, Phys. Rev. D 73 (2006) 034501 [hep-lat/0508031] [SPIRES].ADSGoogle Scholar
  19. [19]
    S. Aoki, R. Frezzotti and P. Weisz, Computation of the improvement coefficient c(SW) to 1-loop with improved gluon actions, Nucl. Phys. B 540 (1999) 501 [hep-lat/9808007] [SPIRES].CrossRefADSGoogle Scholar
  20. [20]
    ALPHA collaboration, S. Sint and P. Weisz, The running quark mass in the SF scheme and its two-loop anomalous dimension, Nucl. Phys. B 545 (1999) 529 [hep-lat/9808013] [SPIRES]. CrossRefADSGoogle Scholar
  21. [21]
  22. [22]
  23. [23]
    CP-PACS/JLQCD collaboration, T. Kaneko et al., Non-perturbative improvement of the axial current with three dynamical flavors and the Iwasaki gauge action, JHEP 04 (2007) 092 [hep-lat/0703006] [SPIRES].CrossRefADSGoogle Scholar
  24. [24]
    S. Takeda, private communication.Google Scholar

Copyright information

© SISSA, Trieste, Italy 2010

Authors and Affiliations

  • PACS-CS collaboration
  • S. Aoki
    • 1
    • 2
  • K.-I. Ishikawa
    • 3
  • N. Ishizuka
    • 1
    • 2
  • T. Izubuchi
    • 4
  • K. Kanaya
    • 1
  • Y. Kuramashi
    • 1
    • 2
  • K. Murano
    • 1
  • Y. Namekawa
    • 2
  • M. Okawa
    • 3
  • Y. Taniguchi
    • 1
    • 2
    Email author
  • A. Ukawa
    • 2
  • N. Ukita
    • 2
  • T. Yoshié
    • 1
    • 2
  1. 1.Graduate School of Pure and Applied SciencesUniversity of T sukubaTsukuba, IbarakiJapan
  2. 2.Center for Computational PhysicsUniversity of TsukubaTsukuba, IbarakiJapan
  3. 3.Graduate School of ScienceHiroshima UniversityHigashi-Hiroshima, HiroshimaJapan
  4. 4.Riken BNL Research CenterBrookhaven National LaboratoryUptonU.S.A.

Personalised recommendations