Advertisement

Light meson physics from maximally twisted mass lattice QCD

  • European Twisted Mass Collaboration
  • Remi Baron
  • Phillip Boucaud
  • Petros Dimopoulos
  • Roberto Frezzotti
  • David Palao
  • Giancarlo Rossi
  • Federico Farchioni
  • Gernot Münster
  • Tobias Sudmann
  • Vicent Gimenez
  • Gregorio Herdoiza
  • Karl Jansen
  • Vittorio Lubicz
  • Silvano Simula
  • C. Michael
  • L. Scorzato
  • A. Shindler
  • C. Urbach
  • U. Wenger
Open Access
Article

Abstract

We present a comprehensive investigation of light meson physics using maximally twisted mass fermions for N f = 2 mass-degenerate quark flavours. By employing four values of the lattice spacing, spatial lattice extents ranging from 2.0 fm to 2.5 fm and pseudo scalar masses in the range 280 ≲ m PS ≲ 650MeV we control the major systematic effects of our calculation. This enables us to confront our N f = 2 data with SU(2) chiral perturbation theory and extract low energy constants of the effective chiral Lagrangian and derived quantities, such as the light quark mass.

Keywords

Lattice QCD Quark Masses and SM Parameters QCD 

References

  1. [1]
    K. Jansen, Lattice QCD: a critical status report, PoS(LATTICE 2008)010 [arXiv:0810.5634] [SPIRES].
  2. [2]
    E.E. Scholz, Light hadron masses and decay constants, arXiv:0911.2191 [SPIRES].
  3. [3]
    L. Del Debbio, L. Giusti, M. Lüscher, R. Petronzio and N. Tantalo, QCD with light Wilson quarks on fine lattices (I): first experiences and physics results, JHEP 02 (2007) 056 [hep-lat/0610059] [SPIRES].CrossRefADSGoogle Scholar
  4. [4]
    RBC-UKQCD collaboration, C. Allton et al., Physical results from 2 + 1 flavor domain wall QCD and SU(2) chiral perturbation theory, Phys. Rev. D 78 (2008) 114509 [arXiv:0804.0473] [SPIRES].ADSGoogle Scholar
  5. [5]
    JLQCD collaboration, S. Aoki et al., T wo-flavor QCD simulation with exact chiral symmetry, Phys. Rev. D 78 (2008) 014508 [arXiv:0803.3197] [SPIRES].ADSGoogle Scholar
  6. [6]
    JLQCD and TWQCD collaboration, J. Noaki et al., Convergence of the chiral expansion in two-flavor lattice QCD, Phys. Rev. Lett. 101 (2008) 202004 [arXiv:0806.0894] [SPIRES].CrossRefADSGoogle Scholar
  7. [7]
    S. Dürr et al., Ab-initio determination of light hadron masses, Science 322 (2008) 1224 [arXiv:0906.3599] [SPIRES].CrossRefADSGoogle Scholar
  8. [8]
    PACS-CS collaboration, S. Aoki et al., Physical point simulation in 2 + 1 flavor lattice QCD, Phys. Rev. D 81 (2010) 074503 [arXiv:0911.2561] [SPIRES].ADSGoogle Scholar
  9. [9]
    PACS-CS collaboration, K.I. Ishikawa et al., SU(2) and SU(3) chiral perturbation theory analyses on baryon masses in 2 + 1 flavor lattice QCD, Phys. Rev. D 80 (2009) 054502 [arXiv:0905.0962] [SPIRES].ADSGoogle Scholar
  10. [10]
    A. Bazavov et al., Full nonperturbative QCD simulations with 2 + 1 flavors of improved staggered quarks, Rev. Mod. Phys. 82 (2010) 1349 [arXiv:0903.3598] [SPIRES].CrossRefADSGoogle Scholar
  11. [11]
    Alpha collaboration, R. Frezzotti, P.A. Grassi, S. Sint and P. Weisz, Lattice QCD with a chirally twisted mass term, JHEP 08 (2001) 058 [hep-lat/0101001] [SPIRES].Google Scholar
  12. [12]
    R. Frezzotti and G.C. Rossi, Chirally improving Wilson fermions. I: O(a) improvement, JHEP 08 (2004) 007 [hep-lat/0306014] [SPIRES].CrossRefADSGoogle Scholar
  13. [13]
    R. Frezzotti and G.C. Rossi, Chirally improving Wilson fermions. II: four-quark operators, JHEP 10 (2004) 070 [hep-lat/0407002] [SPIRES].CrossRefADSGoogle Scholar
  14. [14]
    ETM collaboration, P. Boucaud et al., Dynamical twisted mass fermions with light quarks, Phys. Lett. B 650 (2007) 304 [hep-lat/0701012] [SPIRES].ADSGoogle Scholar
  15. [15]
    ETM collaboration, B. Blossier et al., Light quark masses and pseudoscalar decay constants from N f =2 lattice QCD with twisted mass fermions, JHEP 04 (2008) 020 [arXiv:0709.4574] [SPIRES].Google Scholar
  16. [16]
    K. Cichy, J. Gonzalez Lopez, K. Jansen, A. Kujawa and A. Shindler, Twisted mass, overlap and creutz fermions: cut-off effects at tree-level of perturbation theory, Nucl. Phys. B 800 (2008) 94 [arXiv:0802.3637] [SPIRES].CrossRefADSGoogle Scholar
  17. [17]
    ETM collaboration, P. Boucaud et al., Dynamical twisted mass fermions with light quarks: simulation and analysis details, Comput. Phys. Commun. 179 (2008) 695 [arXiv:0803.0224] [SPIRES].CrossRefADSGoogle Scholar
  18. [18]
    ETM collaboration, C. Alexandrou et al., Light baryon masses with dynamical twisted mass fermions, Phys. Rev. D 78 (2008) 014509 [arXiv:0803.3190] [SPIRES].ADSGoogle Scholar
  19. [19]
    ETM collaboration, K. Jansen, C. Michael and C. Urbach, The η′ meson from lattice QCD, Eur. Phys. J. C 58 (2008) 261 [arXiv:0804.3871] [SPIRES].CrossRefADSGoogle Scholar
  20. [20]
    A. Shindler, Twisted mass lattice QCD, Phys. Rept. 461 (2008) 37 [arXiv:0707.4093] [SPIRES]. CrossRefMathSciNetADSGoogle Scholar
  21. [21]
    ETM collaboration, B. Blossier et al., Pseudoscalar decay constants of kaon and D-mesons from Nf =2 twisted mass Lattice QCD, JHEP07 (2009) 043 [arXiv:0904.0954] [SPIRES].Google Scholar
  22. [22]
    ETM collaboration, K. Jansen, C. McNeile, C. Michael, C. Urbach and f.t.E. Collaboration, Meson masses and decay constants from unquenched lattice QCD, Phys. Rev.D 80 (2009) 054510 [arXiv:0906.4720] [SPIRES].ADSGoogle Scholar
  23. [23]
    ETM collaboration, C. McNeile, C. Michael and C. Urbach, The omega-rho meson mass splitting and mixing from lattice QCD, Phys. Lett. B 674 (2009) 286 [arXiv:0902.3897] [SPIRES].ADSGoogle Scholar
  24. [24]
    B. Blossier et al., A proposal for B-physics on current lattices, JHEP 04 (2010) 049 [arXiv:0909.3187] [SPIRES].CrossRefADSGoogle Scholar
  25. [25]
    K. Jansen and A. Shindler, The ϵ-regime of chiral perturbation theory with Wilson-type fermions, arXiv:0911.1931 [SPIRES].
  26. [26]
    XLF collaboration, K. Jansen, A. Shindler, C. Urbach and I. Wetzorke, Scaling test for Wilson twisted mass QCD, Phys. Lett. B 586 (2004) 432 [hep-lat/0312013] [SPIRES].ADSGoogle Scholar
  27. [27]
    XLF collaboration, K. Jansen, M. Papinutto, A. Shindler, C. Urbach and I. Wetzorke, Light quarks with twisted mass fermions, Phys. Lett. B 619 (2005) 184 [hep-lat/0503031] [SPIRES].ADSGoogle Scholar
  28. [28]
    XLF collaboration, K. Jansen, M. Papinutto, A. Shindler, C. Urbach and I. Wetzorke, Quenched scaling of Wilson twisted mass fermions, JHEP 09 (2005) 071 [hep-lat/0507010] [SPIRES].Google Scholar
  29. [29]
    A.M. Abdel-Rehim, R. Lewis and R.M. Woloshyn, Spectrum of quenched twisted mass lattice QCD at maximal twist, Phys. Rev. D 71 (2005) 094505 [hep-lat/0503007] [SPIRES].ADSGoogle Scholar
  30. [30]
    R. Frezzotti, G. Martinelli, M. Papinutto and G.C. Rossi, Reducing cutoff effects in maximally twisted lattice QCD close to the chiral limit, JHEP 04 (2006) 038 [hep-lat/0503034] [SPIRES].CrossRefADSGoogle Scholar
  31. [31]
    XLF collaboration, K. Jansen et al., Flavour breaking effects of Wilson twisted mass fermions, Phys. Lett. B 624 (2005) 334 [hep-lat/0507032] [SPIRES].ADSGoogle Scholar
  32. [32]
    R. Frezzotti and G. Rossi, O(a 2) cutoff effects in Wilson fermion simulations, PoS(LATTICE 2007)277 [arXiv:0710.2492] [SPIRES].
  33. [33]
    P. Dimopoulos, R. Frezzotti, C. Michael, G.C. Rossi and C. Urbach, O(a 2) cutoff effects in lattice Wilson fermion simulations, Phys. Rev.D 81 (2010) 034509 [arXiv:0908.0451] [SPIRES].ADSGoogle Scholar
  34. [34]
    ETM collaboration, C. Urbach, Lattice QCD with two light Wilson quarks and maximally twisted mass, PoS(LATTICE 2007)022 [arXiv:0710.1517] [SPIRES].
  35. [35]
    ETM collaboration, P. Dimopoulos, R. Frezzotti, G. Herdoiza, C. Urbach and U. Wenger, Scaling and low energy constants in lattice QCD with N f =2 maximally twisted Wilson quarks, PoS(LATTICE 2007)102 [arXiv:0710.2498] [SPIRES].
  36. [36]
    ETM collaboration, P. Dimopoulos et al., Scaling and chiral extrapolation of pion mass and decay constant with maximally twisted mass QCD, PoS(LATTTICE 2008)103 [arXiv:0810.2873] [SPIRES].
  37. [37]
    C.W. Bernard et al., Finite size and quark mass effects on the QCD spectrum with two flavors, Phys. Rev. D 48 (1993) 4419 [hep-lat/9305023] [SPIRES].ADSGoogle Scholar
  38. [38]
    CP-PACS collaboration, Y. Namekawa et al., Light hadron spectroscopy in two-flavor QCD with small sea quark masses, Phys. Rev. D 70 (2004) 074503 [hep-lat/0404014] [SPIRES].ADSGoogle Scholar
  39. [39]
    JLQCD collaboration, S. Aoki et al., Light hadron spectroscopy with two flavors of O(a)-improved dynamical quarks, Phys. Rev. D 68 (2003) 054502 [hep-lat/0212039] [SPIRES].ADSGoogle Scholar
  40. [40]
    P. Weisz, Continuum limit improved lattice action for pure Yang-Mills theory. 1, Nucl. Phys. B 212 (1983) 1 [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  41. [41]
    F. Farchioni et al., Exploring the phase structure of lattice QCD with twisted mass quarks, Nucl. Phys. Proc. Suppl. 140 (2005) 240 [hep-lat/0409098] [SPIRES].CrossRefADSGoogle Scholar
  42. [42]
    F. Farchioni et al., The phase structure of lattice QCD with Wilson quarks and renormalization group improved gluons, Eur. Phys. J. C 42 (2005) 73 [hep-lat/0410031] [SPIRES].CrossRefADSGoogle Scholar
  43. [43]
    R. Sommer, A New way to set the energy scale in lattice gauge theories and its applications to the static force and αs in SU(2) Yang-Mills theory, Nucl. Phys. B 411 (1994) 839 [hep-lat/9310022] [SPIRES].CrossRefADSGoogle Scholar
  44. [44]
    S. Weinberg, Phenomenological lagrangians, Physica A 96 (1979) 327 [SPIRES].ADSGoogle Scholar
  45. [45]
    J. Gasser and H. Leutwyler, Chiral perturbation theory to one loop, Ann. Phys. 158 (1984) 142 [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  46. [46]
    J. Gasser and H. Leutwyler, Chiral perturbation theory: expansions in the mass of the strange quark, Nucl. Phys. B 250 (1985) 465 [SPIRES].CrossRefADSGoogle Scholar
  47. [47]
    Particle Data Group collaboration, C. Amsler et al., Review of particle physics, Phys. Lett. B 667 (2008) 1 [SPIRES].ADSGoogle Scholar
  48. [48]
    R. Baron et al., Light hadrons from lattice QCD with light (u, d), strange and charm dynamical quarks, JHEP 06 (2010) 111 [arXiv:1004.5284] [SPIRES].CrossRefADSGoogle Scholar
  49. [49]
    T. Yoshie, Making use of the International Lattice Data Grid, PoS(LATTICE 2008)019 [arXiv:0812.0849] [SPIRES].
  50. [50]
    C. Urbach, K. Jansen, A. Shindler and U. Wenger, HMC algorithm with multiple time scale integration and mass preconditioning, Comput. Phys. Commun. 174 (2006) 87 [hep-lat/0506011] [SPIRES].CrossRefADSGoogle Scholar
  51. [51]
    K. Jansen and C. Urbach, tmLQCD: a program suite to simulate Wilson Twisted mass Lattice QCD, Comput. Phys. Commun. 180 (2009) 2717 [arXiv:0905.3331] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  52. [52]
    H.B. Meyer et al., Exploring the HMC trajectory-length dependence of autocorrelation times in lattice QCD, Comput. Phys. Commun. 176 (2007) 91 [hep-lat/0606004] [SPIRES].CrossRefGoogle Scholar
  53. [53]
    G. Martinelli, C. Pittori, C.T. Sachrajda, M. Testa and A. Vladikas, A general method for nonperturbative renormalization of lattice operators, Nucl. Phys. B 445 (1995) 81 [hep-lat/9411010] [SPIRES].CrossRefADSGoogle Scholar
  54. [54]
    P. Dimopoulos et al., Renormalisation of quark bilinears with Nf=2 Wilson fermions and tree-level improved gauge action, PoS(LATTICE 2007)241 [arXiv:0710.0975] [SPIRES].
  55. [55]
    ETM collaboration, C. Alexandrou et al., The low-lying baryon spectrum with two dynamical twisted mass fermions, Phys. Rev. D 80 (2009) 114503 [arXiv:0910.2419] [SPIRES].ADSGoogle Scholar
  56. [56]
    F. Farchioni et al., Twisted mass quarks and the phase structure of lattice QCD, Eur. Phys. J. C 39 (2005) 421 [hep-lat/0406039] [SPIRES].CrossRefADSGoogle Scholar
  57. [57]
    F. Farchioni et al., Lattice spacing dependence of the first order phase transition for dynamical twisted mass fermions, Phys. Lett. B 624 (2005) 324 [hep-lat/0506025] [SPIRES].ADSGoogle Scholar
  58. [58]
    S.R. Sharpe and J.M.S. Wu, The phase diagram of twisted mass lattice QCD, Phys. Rev. D 70 (2004) 094029 [hep-lat/0407025] [SPIRES].ADSGoogle Scholar
  59. [59]
    G. Munster, On the phase structure of twisted mass lattice QCD, JHEP 09 (2004) 035 [hep-lat/0407006] [SPIRES].CrossRefADSGoogle Scholar
  60. [60]
    L. Scorzato, Pion mass splitting and phase structure in twisted mass QCD, Eur. Phys. J. C 37 (2004) 445 [hep-lat/0407023] [SPIRES].CrossRefADSGoogle Scholar
  61. [61]
    S.R. Sharpe and J.M.S. Wu, Twisted mass chiral perturbation theory at next-to-leading order, Phys. Rev. D 71 (2005) 074501 [hep-lat/0411021] [SPIRES].ADSGoogle Scholar
  62. [62]
    J. Gasser and H. Leutwyler, Light quarks at low temperatures, Phys. Lett. B 184 (1987) 83 [SPIRES].ADSGoogle Scholar
  63. [63]
    M. Lüscher, Volume dependence of the energy spectrum in massive quantum field theories. 1. Stable particle states, Commun. Math. Phys. 104 (1986) 177 [SPIRES].CrossRefADSGoogle Scholar
  64. [64]
    G. Colangelo and S. Dürr, The pion mass in finite volume, Eur. Phys. J. C 33 (2004) 543 [hep-lat/0311023] [SPIRES].ADSGoogle Scholar
  65. [65]
    G. Colangelo, S. Dürr and C. Haefeli, Finite volume effects for meson masses and decay constants, Nucl. Phys. B 721 (2005) 136 [hep-lat/0503014] [SPIRES].CrossRefADSGoogle Scholar
  66. [66]
    G. Colangelo and C. Haefeli, Finite volume effects for the pion mass at two loops, Nucl. Phys. B 744 (2006) 14 [hep-lat/0602017] [SPIRES].CrossRefADSGoogle Scholar
  67. [67]
    G. Colangelo, J. Gasser and H. Leutwyler, ππ scattering, Nucl. Phys. B 603 (2001) 125 [hep-ph/0103088] [SPIRES].CrossRefADSGoogle Scholar
  68. [68]
    R. Frezzotti, V. Lubicz and S. Simula, Electromagnetic form factor of the pion from twisted-mass lattice QCD at N f = 2, Phys. Rev. D 79 (2009) 074506 [arXiv:0812.4042] [SPIRES]. ADSGoogle Scholar
  69. [69]
    B. Orth, T. Lippert and K. Schilling, Finite-size effects in lattice QCD with dynamical Wilson fermions, Phys. Rev. D 72 (2005) 014503 [hep-lat/0503016] [SPIRES].ADSGoogle Scholar
  70. [70]
    L. Giusti, Light dynamical fermions on the lattice: toward the chiral regime of QCD, PoS(LATTICE 2006)009 [hep-lat/0702014] [SPIRES].
  71. [71]
    G. Munster and C. Schmidt, Chiral perturbation theory for lattice QCD with a twisted mass term, Europhys. Lett. 66 (2004) 652 [hep-lat/0311032] [SPIRES].CrossRefADSGoogle Scholar
  72. [72]
    K.G. Chetyrkin and A. Retey, Renormalization and running of quark mass and field in the regularization invariant and MS-bar schemes at three and four loops, Nucl. Phys. B 583 (2000) 3 [hep-ph/9910332] [SPIRES].CrossRefADSGoogle Scholar
  73. [73]
    ALPHA collaboration, M. Della Morte et al., Scaling test of two-flavor O(a)-improved lattice QCD, JHEP 07 (2008) 037 [arXiv:0804.3383] [SPIRES].CrossRefADSGoogle Scholar
  74. [74]
    S. Necco, Chiral low-energy constants from lattice QCD, PoS(CONFINEMENT8)024 [arXiv:0901.4257] [SPIRES].
  75. [75]
    S. Aoki, Pion physics on the lattice, PoS(CD09)070 [arXiv:0910.3806] [SPIRES].
  76. [76]
    ETM collaboration, R. Baron et al., Status of ETMC simulations with N f = 2 + 1 + 1 twisted mass fermions, PoS(LATTICE2008)094 [arXiv:0810.3807] [SPIRES].
  77. [77]
    ETM collaboration, R. Baron et al., First results of ETMC simulations with N f = 2 + 1 + 1 twisted mass fermions, PoS(LAT 2009)104 [arXiv:0911.5224] [SPIRES]
  78. [78]
    SciDAC collaboration, R.G. Edwards and B. Joo, The Chroma software system for lattice QCD, Nucl. Phys. Proc. Suppl. 140 (2005) 832 [hep-lat/0409003] [SPIRES].CrossRefADSGoogle Scholar
  79. [79]
    P. Boyle, Bagel assembler kernel generator, http://www.ph.ed.ac.uk/~paboyle/bagel/Bagel.html.
  80. [80]
    R Development Core Team, R: a language and environment for statistical computing, R Foundation for Statistical Computing, Vienna Austria (2005).Google Scholar
  81. [81]
    G.P. Lepage et al., Constrained curve fitting, Nucl. Phys. Proc. Suppl. 106 (2002) 12 [hep-lat/0110175] [SPIRES].CrossRefADSGoogle Scholar
  82. [82]
    C. Michael, Fitting correlated data, Phys. Rev. D 49 (1994) 2616 [hep-lat/9310026] [SPIRES].ADSGoogle Scholar
  83. [83]
    C. Michael and A. McKerrell, Fitting correlated hadron mass spectrum data, Phys. Rev. D 51 (1995) 3745 [hep-lat/9412087] [SPIRES].ADSGoogle Scholar

Copyright information

© The Author(s) 2010

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  • European Twisted Mass Collaboration
  • Remi Baron
    • 1
  • Phillip Boucaud
    • 1
  • Petros Dimopoulos
    • 2
    • 3
  • Roberto Frezzotti
    • 2
    • 3
  • David Palao
    • 2
    • 3
  • Giancarlo Rossi
    • 2
    • 3
  • Federico Farchioni
    • 4
  • Gernot Münster
    • 4
  • Tobias Sudmann
    • 4
  • Vicent Gimenez
    • 5
  • Gregorio Herdoiza
    • 6
  • Karl Jansen
    • 6
  • Vittorio Lubicz
    • 7
    • 8
  • Silvano Simula
    • 8
  • C. Michael
    • 9
  • L. Scorzato
    • 10
  • A. Shindler
    • 11
  • C. Urbach
    • 12
  • U. Wenger
    • 13
  1. 1.Laboratoire de Physique Théorique (Bât. 210)Université de Paris XIOrsay-CedexFrance
  2. 2.Dip. di FisicaUniversità di Roma Tor VergataRomaItaly
  3. 3.INFN, Sezione di Tor VergataRomaItaly
  4. 4.Universität MünsterInstitut für Theoretische PhysikMünsterGermany
  5. 5.Dep. de Física Teòrica and IFICUniversitat de València-CSICBurjassotSpain
  6. 6.NIC, DESY, ZeuthenZeuthenGermany
  7. 7.Dip. di FisicaUniversità di Roma TreRomaItaly
  8. 8.INFN, Sezione di Roma Tre IIIRomaItaly
  9. 9.Theoretical Physics Division, Dept. of Mathematical SciencesUniversity of LiverpoolLiverpoolU.K.
  10. 10.ECT*TrentoItaly
  11. 11.Instituto de Fisica TeoricaUniversidad Autonoma de Madrid, Facultad de Ciencias C-XICantoblanco, MadridSpain
  12. 12.Helmholtz-Institut für Strahlen-und Kernphysik (Theory), and Bethe Center for Theoretical Physics, Nussallee 14-16Universität BonnBonnGermany
  13. 13.Institute for Theoretical PhysicsUniversity of BernBernSwitzerland

Personalised recommendations