Nonabelian (2,0) tensor multiplets and 3-algebras

Open Access


Using 3-algebras we obtain a nonabelian system of equations that furnish a representation of the (2, 0)-supersymmetric tensor multiplet. The on-shell conditions are quite restrictive so that the system can be reduced to five-dimensional gauge theory along with six-dimensional abelian (2, 0) tensor multiplets. We briefly discuss possible applications to D4-branes using a spacelike reduction and M5-branes using a null reduction.


D-branes M-Theory 


  1. [1]
    J. Bagger and N. Lambert, Modeling multiple M2’s, Phys. Rev. D 75 (2007) 045020 [hep-th/0611108] [SPIRES].MathSciNetADSGoogle Scholar
  2. [2]
    J. Bagger and N. Lambert, Gauge symmetry and supersymmetry of multiple M2-branes, Phys. Rev. D 77 (2008) 065008 [arXiv:0711.0955] [SPIRES].MathSciNetADSGoogle Scholar
  3. [3]
    J. Bagger and N. Lambert, Comments on multiple M2-branes, JHEP 02 (2008) 105 [arXiv:0712.3738] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  4. [4]
    A. Gustavsson, Algebraic structures on parallel M2-branes, Nucl. Phys. B 811 (2009) 66 [arXiv:0709.1260] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  5. [5]
    O. Aharony, O. Bergman, D.L. Jafferis and J. Maldacena, N = 6 superconformal Chern-Simons-matter theories, M2-branes and their gravity duals, JHEP 10 (2008) 091 [arXiv:0806.1218] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  6. [6]
    J. Bagger and N. Lambert, Three-algebras and N = 6 Chern-Simons gauge theories, Phys. Rev. D 79 (2009) 025002 [arXiv:0807.0163] [SPIRES].MathSciNetADSGoogle Scholar
  7. [7]
    D.S. Berman, M-theory branes and their interactions, Phys. Rept. 456 (2008) 89 [arXiv:0710.1707] [SPIRES].CrossRefADSGoogle Scholar
  8. [8]
    P. Pasti, D.P. Sorokin and M. Tonin, Covariant action for a D = 11 five-brane with the chiral field, Phys. Lett. B 398 (1997) 41 [hep-th/9701037] [SPIRES].MathSciNetADSGoogle Scholar
  9. [9]
    I.A. Bandos et al., Covariant action for the super-five-brane of M-theory, Phys. Rev. Lett. 78 (1997) 4332 [hep-th/9701149] [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar
  10. [10]
    C.-S. Chu and D.J. Smith, Towards the Quantum Geometry of the M5-brane in a Constant C-Field from Multiple Membranes, JHEP 04 (2009) 097 [arXiv:0901.1847] [SPIRES].CrossRefADSGoogle Scholar
  11. [11]
    J. Huddleston, Relations between M-brane and D-brane quantum geometries, arXiv:1006.5375 [SPIRES].
  12. [12]
    C.-H. Chen, K. Furuuchi, P.-M. Ho and T. Takimi, More on the Nambu-Poisson M5-brane theory: scaling limit, background independence and an all order solution to the Seiberg-Witten map, arXiv:1006.5291 [SPIRES].
  13. [13]
    S.-J. Rey and F. Sugino, A nonperturbative proposal for nonabelian tensor gauge theory and dynamical quantum Yang-Baxter maps, arXiv:1002.4636 [SPIRES].
  14. [14]
    D.S. Berman, M.J. Perry, E. Sezgin and D.C. Thompson, Boundary conditions for interacting membranes, JHEP 04 (2010) 025 [arXiv:0912.3504] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  15. [15]
    J. Gomis, G. Milanesi and J.G. Russo, Bagger-Lambert theory for general Lie algebras, JHEP 06 (2008) 075 [arXiv:0805.1012] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  16. [16]
    S. Benvenuti, D. Rodriguez-Gomez, E. Tonni and H. Verlinde, N = 8 superconformal gauge theories and M2 branes, JHEP 01 (2009) 078 [arXiv:0805.1087] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  17. [17]
    P.-M. Ho, Y. Imamura and Y. Matsuo, M2 to D2 revisited, JHEP 07 (2008) 003 [arXiv:0805.1202] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  18. [18]
    B. Ezhuthachan, S. Mukhi and C. Papageorgakis, D2 to D2, JHEP 07 (2008) 041 [arXiv:0806.1639] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  19. [19]
    N.D. Lambert and D. Tong, Dyonic instantons in five-dimensional gauge theories, Phys. Lett. B 462 (1999) 89 [hep-th/9907014] [SPIRES].ADSGoogle Scholar
  20. [20]
    P.S. Howe, E. Sezgin and P.C. West, Covariant field equations of the M-theory five-brane, Phys. Lett. B 399 (1997) 49 [hep-th/9702008] [SPIRES].MathSciNetADSGoogle Scholar
  21. [21]
    G. Papadopoulos, M2-branes, 3-Lie algebras and Plucker relations, JHEP 05 (2008) 054 [arXiv:0804.2662] [SPIRES].CrossRefADSGoogle Scholar
  22. [22]
    J.P. Gauntlett and J.B. Gutowski, Constraining maximally supersymmetric membrane actions, JHEP 06 (2008) 053 [arXiv:0804.3078] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  23. [23]
    P. de Medeiros, J.M. Figueroa-O’Farrill and E. Mendez-Escobar, Metric Lie 3-algebras in Bagger-Lambert theory, JHEP 08 (2008) 045 [arXiv:0806.3242] [SPIRES].CrossRefGoogle Scholar
  24. [24]
    P.-M. Ho, Y. Matsuo and S. Shiba, Lorentzian Lie (3-)algebra and toroidal compactification of M/string theory, JHEP 03 (2009) 045 [arXiv:0901.2003] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  25. [25]
    P. de Medeiros, J. Figueroa-O’Farrill, E. Mendez-Escobar and P. Ritter, Metric 3-Lie algebras for unitary Bagger-Lambert theories, JHEP 04 (2009) 037 [arXiv:0902.4674] [SPIRES].CrossRefGoogle Scholar
  26. [26]
    J.A. de Azcarraga and J.M. Izquierdo, n-ary algebras: a review with applications, J. Phys. A 43 (2010) 293001 [arXiv:1005.1028] [SPIRES]. Google Scholar
  27. [27]
    P.S. Howe, N.D. Lambert and P.C. West, The self-dual string soliton, Nucl. Phys. B 515 (1998) 203 [hep-th/9709014] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  28. [28]
    J.P. Gauntlett, N.D. Lambert and P.C. West, Supersymmetric fivebrane solitons, Adv. Theor. Math. Phys. 3 (1999) 91 [hep-th/9811024] [SPIRES].MATHMathSciNetGoogle Scholar

Copyright information

© The Author(s) 2010

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  1. 1.Theory DivisionCERNGeneva 23Switzerland
  2. 2.Department of Mathematics, King’s College LondonThe StrandLondonU.K.

Personalised recommendations