Lumps of plasma in arbitrary dimensions

Article

Abstract

We use the AdS/CFT correspondence in a regime in which the field theory reduces to fluid dynamics to construct an infinite class of new black objects in Scherk-Schwarz compactified AdSd+2 space. Our configurations are dual to black objects that generalize black rings and have horizon topology Sd−nTn for \( n \leq \frac{{d - 1}}{2} \). Locally our fluid configurations are plasma sheets that curve around into tori whose radii are large compared to the thickness of the sheets (the ratio of these radii constitutes a small parameter that permits the perturbative construction of these configurations). These toroidal configurations are stabilized by angular momentum. We study solutions whose dual horizon topologies are S3 × S1, S4 × S1 and S3 × T2 in detail; in particular we investigate the thermodynamic properties of these objects. We also present a formal general construction of the most general stationary configuration of fluids with boundaries that solve the d dimensional relativistic Navier-Stokes equation.

Keywords

AdS-CFT Correspondence Black Holes 

References

  1. [1]
    R. Emparan, T. Harmark, V. Niarchos, N.A. Obers and M.J. Rodriguez, The phase structure of higher-dimensional black rings and black holes, JHEP 10 (2007) 110 [arXiv:0708.2181] [SPIRES]. CrossRefMathSciNetADSGoogle Scholar
  2. [2]
    V. Niarchos, Phases of higher dimensional black holes, Mod. Phys. Lett. A 23 (2008) 2625 [arXiv:0808.2776] [SPIRES].MathSciNetADSGoogle Scholar
  3. [3]
    J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200] [SPIRES]. MATHMathSciNetADSGoogle Scholar
  4. [4]
    S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from non-critical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [SPIRES].MathSciNetADSGoogle Scholar
  5. [5]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [SPIRES].MATHMathSciNetGoogle Scholar
  6. [6]
    E. Witten, Anti-de Sitter space, thermal phase transition and confinement in gauge theories, Adv. Theor. Math. Phys. 2 (1998) 505 [hep-th/9803131] [SPIRES].MATHMathSciNetGoogle Scholar
  7. [7]
    O. Aharony, S. Minwalla and T. Wiseman, Plasma-balls in large-N gauge theories and localized black holes, Class. Quant. Grav. 23 (2006) 2171 [hep-th/0507219] [SPIRES].MATHCrossRefMathSciNetGoogle Scholar
  8. [8]
    S. Lahiri and S. Minwalla, Plasmarings as dual black rings, JHEP 05 (2008) 001 [arXiv:0705.3404] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  9. [9]
    S. Bhardwaj and J. Bhattacharya, Thermodynamics of plasmaballs and plasmarings in 3+1 dimensions, JHEP 03 (2009) 101 [arXiv:0806.1897] [SPIRES].CrossRefADSGoogle Scholar
  10. [10]
    R. Emparan, T. Harmark, V. Niarchos and N.A. Obers, Blackfolds, Phys. Rev. Lett. 102 (2009) 191301 [arXiv:0902.0427] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  11. [11]
    N. Andersson and G.L. Comer, Relativistic fluid dynamics: Physics for many different scales, Living Rev. Rel. 10 (2005) 1 [gr-qc/0605010] [SPIRES].Google Scholar
  12. [12]
    D.T. Son and A.O. Starinets, V iscosity, black holes and quantum field theory, Ann. Rev. Nucl. Part. Sci. 57 (2007) 95 [arXiv:0704.0240] [SPIRES].CrossRefADSGoogle Scholar
  13. [13]
    M.M. Caldarelli, O.J.C. Dias, R. Emparan and D. Klemm, Black holes as lumps of fluid, JHEP 04 (2009) 024 [arXiv:0811.2381] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  14. [14]
    R. Emparan and H.S. Reall, Black holes in higher dimensions, Living Rev. Rel. 11 (2008) 6 [arXiv:0801.3471] [SPIRES].Google Scholar
  15. [15]
    J. Camps, R. Emparan and N. Haddad, work in progress.Google Scholar
  16. [16]
    S. Bhattacharyya, V.E. Hubeny, S. Minwalla and M. Rangamani, Nonlinear fluid dynamics from gravity, JHEP 02 (2008) 045 [arXiv:0712.2456] [SPIRES].CrossRefADSGoogle Scholar
  17. [17]
    M.M. Caldarelli, R. Emparan and M.J. Rodriguez, Black rings in (anti)-deSitter space, JHEP 11 (2008) 011 [arXiv:0806.1954] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  18. [18]
    R. Gregory and R. Laflamme, Black strings and p-branes are unstable, Phys. Rev. Lett. 70 (1993) 2837 [hep-th/9301052] [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar
  19. [19]
    R. Gregory and R. Laflamme, The instability of charged black strings and p-branes, Nucl. Phys. B 428 (1994) 399 [hep-th/9404071] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  20. [20]
    M.M. Caldarelli, O.J.C. Dias and D. Klemm, Dyonic AdS black holes from magnetohydrodynamics, JHEP 03 (2009) 025 [arXiv:0812.0801] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  21. [21]
    K.-i. Maeda and U. Miyamoto, Black hole-black string phase transitions from hydrodynamics, JHEP 03 (2009) 066 [arXiv:0811.2305] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  22. [22]
    V. Cardoso and O.J.C. Dias, Bifurcation of plasma balls and black holes to Lobed configurations, JHEP 04 (2009) 125 [arXiv:0902.3560] [SPIRES].CrossRefADSGoogle Scholar
  23. [23]
    H. Elvang and P. Figueras, Black saturn, JHEP 05 (2007) 050 [hep-th/0701035] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  24. [24]
    J.P. Gauntlett and J.B. Gutowski, Concentric black rings, Phys. Rev. D 71 (2005) 025013 [hep-th/0408010] [SPIRES].MathSciNetADSGoogle Scholar
  25. [25]
    J.P. Gauntlett and J.B. Gutowski, General concentric black rings, Phys. Rev. D 71 (2005) 045002 [hep-th/0408122] [SPIRES].MathSciNetADSGoogle Scholar
  26. [26]
    H. Iguchi and T. Mishima, Black di-ring and infinite nonuniqueness, Phys. Rev. D 75 (2007) 064018 [Erratum ibid. D 78 (2008) 069903] [hep-th/0701043] [SPIRES].MathSciNetADSGoogle Scholar
  27. [27]
    J. Evslin and C. Krishnan, The black di-ring: an inverse scattering construction, Class. Quant. Grav. 26 (2009) 125018 [arXiv:0706.1231] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  28. [28]
    H. Elvang, R. Emparan and P. Figueras, Phases of five-dimensional black holes, JHEP 05 (2007) 056 [hep-th/0702111] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  29. [29]
    J. Evslin and C. Krishnan, Metastable black saturns, JHEP 09 (2008) 003 [arXiv:0804.4575] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  30. [30]
    R.M. Wald, General relativity, The University of Chicago Press, Chicago 60637, U.S.A. (1984).MATHGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2010

Authors and Affiliations

  1. 1.Department of Theoretical PhysicsTata Institute of Fundamental ResearchMumbaiIndia
  2. 2.Jefferson Physical LaboratoryHarvard UniversityCambridgeU.S.A.

Personalised recommendations