On semiclassical approximation for correlators of closed string vertex operators in AdS/CFT



We consider the 2-point function of string vertex operators representing string state with large spin in AdS5. We compute this correlator in the semiclassical approximation and show that it has the expected (on the basis of state-operator correspondence) form of the strong-coupling limit of the 2-point function of single trace minimal twist operators in gauge theory. The semiclassical solution representing the stationary point of the path integral with two vertex operator insertions is found to be related to the large spin limit of the folded spinning string solution by a euclidean continuation, transformation to Poincare coordinates and conformal map from cylinder to complex plane. The role of the source terms coming from the vertex operator insertions is to specify the parameters of the solution in terms of quantum numbers (dimension and spin) of the corresponding string state. Understanding further how similar semiclassical methods may work for 3-point functions may shed light on strong-coupling limit of the corresponding correlators in gauge theory as was recently suggested by Janik et al in arXiv:1002.4613.


Gauge-gravity correspondence AdS-CFT Correspondence 


  1. [1]
    J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200] [SPIRES].MATHMathSciNetADSGoogle Scholar
  2. [2]
    S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from non-critical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [SPIRES].MathSciNetADSGoogle Scholar
  3. [3]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [SPIRES].MATHMathSciNetGoogle Scholar
  4. [4]
    A.M. Polyakov, Gauge fields and space-time, Int. J. Mod. Phys. A 17S1 (2002) 119 [hep-th/0110196] [SPIRES].MathSciNetADSGoogle Scholar
  5. [5]
    A.M. Polyakov, Old and new aspects of the gauge/strings correspondence, talk at Strings 2002, Cambridge, July 15-20(2002), http://www.damtp.cam.ac.uk/strings02/avt/polyakov/.
  6. [6]
    A.A. Tseytlin, On semiclassical approximation and spinning string vertex operators in AdS 5 × S 5, Nucl. Phys. B 664 (2003) 247 [hep-th/0304139] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  7. [7]
    R.R. Metsaev and A.A. Tseytlin, Type IIB superstring action in AdS 5 × S 5 background, Nucl. Phys. B 533 (1998) 109 [hep-th/9805028] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  8. [8]
    S. Lee, S. Minwalla, M. Rangamani and N. Seiberg, Three-point functions of chiral operators in D = 4, N = 4 SY M at large-N, Adv. Theor. Math. Phys. 2 (1998) 697 [hep-th/9806074] [SPIRES]. MATHMathSciNetGoogle Scholar
  9. [9]
    E. D’Hoker and D.Z. Freedman, Supersymmetric gauge theories and the AdS/CFT correspondence, hep-th/0201253 [SPIRES].
  10. [10]
    D. Kutasov and N. Seiberg, More comments on string theory on AdS 3, JHEP 04 (1999) 008 [hep-th/9903219] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  11. [11]
    J.M. Maldacena and H. Ooguri, Strings in AdS 3 and the SL(2,R) WZW model. III: Correlation functions, Phys. Rev. D 65 (2002) 106006 [hep-th/0111180] [SPIRES].MathSciNetADSGoogle Scholar
  12. [12]
    M.R. Gaberdiel and I. Kirsch, W orldsheet correlators in AdS 3 /CFT 2, JHEP 04 (2007) 050 [hep-th/0703001] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  13. [13]
    A. Dabholkar and A. Pakman, Exact chiral ring of AdS 3 /CFT 2, Adv. Theor. Math. Phys. 13 (2009) 409 [hep-th/0703022] [SPIRES].MATHMathSciNetGoogle Scholar
  14. [14]
    D.J. Gross and P.F. Mende, String Theory Beyond the Planck Scale, Nucl. Phys. B 303 (1988) 407 [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  15. [15]
    D.J. Gross and J.L. Manes, The high-energy behavior of open string scattering, Nucl. Phys. B 326 (1989) 73 [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  16. [16]
    S.S. Gubser, I.R. Klebanov and A.M. Polyakov, A semi-classical limit of the gauge/string correspondence, Nucl. Phys. B 636 (2002) 99 [hep-th/0204051] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  17. [17]
    K. Zarembo, Open string fluctuations in AdS 5 × S 5 and operators with large R charge, Phys. Rev. D 66 (2002) 105021 [hep-th/0209095] [SPIRES].MathSciNetADSGoogle Scholar
  18. [18]
    V. Pestun and K. Zarembo, Comparing strings in AdS 5 × S 5 to planar diagrams: An example, Phys. Rev. D 67 (2003) 086007 [hep-th/0212296] [SPIRES].MathSciNetADSGoogle Scholar
  19. [19]
    S. Dobashi, H. Shimada and T. Yoneya, Holographic reformulation of string theory on AdS 5 × S 5 background in the PP-wave limit, Nucl. Phys. B 665 (2003) 94 [hep-th/0209251] [SPIRES]. CrossRefMathSciNetADSGoogle Scholar
  20. [20]
    S. Dobashi and T. Yoneya, Resolving the holography in the plane-wave limit of AdS/CFT correspondence, Nucl. Phys. B 711 (2005) 3 [hep-th/0406225] [SPIRES].MathSciNetADSGoogle Scholar
  21. [21]
    A. Miwa and T. Yoneya, Holography of Wilson-loop expectation values with local operator insertions, JHEP 12 (2006) 060 [hep-th/0609007] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  22. [22]
    A. Tsuji, Holography of Wilson loop correlator and spinning strings, Prog. Theor. Phys. 117 (2007) 557 [hep-th/0606030] [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar
  23. [23]
    M. Sakaguchi and K. Yoshida, A Semiclassical String Description of Wilson Loop with Local Operators, Nucl. Phys. B 798 (2008) 72 [arXiv:0709.4187] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  24. [24]
    E.I. Buchbinder, Energy-Spin Trajectories in AdS 5 × S 5 from Semiclassical Vertex Operators, JHEP 04 (2010) 107 [arXiv:1002.1716] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  25. [25]
    J. de Boer, H. Ooguri, H. Robins and J. Tannenhauser, String theory on AdS(3), JHEP 12 (1998) 026 [hep-th/9812046] [SPIRES].CrossRefGoogle Scholar
  26. [26]
    R.A. Janik, P. Surowka and A. Wereszczynski, On correlation functions of operators dual to classical spinning string states, JHEP 05 (2010) 030 [arXiv:1002.4613] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  27. [27]
    M. Kruczenski, R. Roiban, A. Tirziu and A.A. Tseytlin, Strong-coupling expansion of cusp anomaly and gluon amplitudes from quantum open strings in AdS 5 × S 5, Nucl. Phys. B 791 (2008) 93 [arXiv:0707.4254] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  28. [28]
    M. Kruczenski, A note on twist two operators in N = 4 SYM and Wilson loops in Minkowski signature, JHEP 12 (2002) 024 [hep-th/0210115] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  29. [29]
    H.J. de Vega and I.L. Egusquiza, Planetoid String Solutions in 3 + 1 Axisymmetric Spacetimes, Phys. Rev. D 54 (1996) 7513 [hep-th/9607056] [SPIRES].ADSGoogle Scholar
  30. [30]
    S. Frolov, A. Tirziu and A.A. Tseytlin, Logarithmic corrections to higher twist scaling at strong coupling from AdS/CFT, Nucl. Phys. B 766 (2007) 232 [hep-th/0611269] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  31. [31]
    A.A. Tseytlin, Semiclassical quantization of superstrings: AdS 5 × S 5 and beyond, Int. J. Mod. Phys. A 18 (2003) 981 [hep-th/0209116] [SPIRES].MathSciNetADSGoogle Scholar
  32. [32]
    S. Frolov and A.A. Tseytlin, Semiclassical quantization of rotating superstring in AdS 5 × S 5, JHEP 06 (2002) 007 [hep-th/0204226] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  33. [33]
    M. Beccaria, V. Forini, A. Tirziu and A.A. Tseytlin, Structure of large spin expansion of anomalous dimensions at strong coupling, Nucl. Phys. B 812 (2009) 144 [arXiv:0809.5234] [SPIRES]. CrossRefMathSciNetADSGoogle Scholar
  34. [34]
    M. Beccaria, G.V. Dunne, V. Forini, M. Pawellek and A.A. Tseytlin, Exact computation of one-loop correction to energy of spinning folded string in AdS 5 × S 5, J. Phys. A 43 (2010) 165402 [arXiv:1001.4018] [SPIRES]. MathSciNetADSGoogle Scholar
  35. [35]
    R. Iengo and J.G. Russo, Semiclassical decay of strings with maximum angular momentum, JHEP 03 (2003) 030 [hep-th/0301109] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  36. [36]
    K. Peeters, J. Plefka and M. Zamaklar, Splitting spinning strings in AdS/CFT, JHEP 11 (2004) 054 [hep-th/0410275] [SPIRES].CrossRefMathSciNetADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2010

Authors and Affiliations

  1. 1.The Blackett LaboratoryImperial CollegeLondonU.K.
  2. 2.Lebedev InstituteMoscowRussia

Personalised recommendations