Advertisement

On the reflection of magnon bound states

  • Niall MacKay
  • Vidas Regelskis
Article

Abstract

We investigate the reflection of two-particle bound states of a free open string in the light-cone AdS 5 ×S 5 string sigma model, for large angular momentum J = J 56 and ending on a D7 brane which wraps the entire AdS 5 and a maximal S 3S 5. We use the superspace formalism to analyse fundamental and two-particle bound states in the cases of supersymmetry-preserving and broken-supersymmetry boundaries. We find the boundary S-matrices corresponding to bound states both in the bulk and on the boundary.

Keywords

AdS-CFT Correspondence Exact S-Matrix 

References

  1. [1]
    J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200] [SPIRES].MATHMathSciNetADSGoogle Scholar
  2. [2]
    G. Arutyunov and S. Frolov, Foundations of the AdS 5 × S 5 superstring. part I, J. Phys. A 42 (2009) 254003 [arXiv:0901.4937] [SPIRES].MathSciNetADSGoogle Scholar
  3. [3]
    G. Arutyunov and S. Frolov, Integrable Hamiltonian for classical strings on AdS 5 × S 5, JHEP 02 (2005) 059 [hep-th/0411089] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  4. [4]
    M. Staudacher, The factorized S-matrix of CFT/AdS, JHEP 05 (2005) 054 [hep-th/0412188] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  5. [5]
    N. Beisert, The Analytic Bethe Ansatz for a Chain with Centrally Extended SU(2|2) Symmetry, J. Stat. Mech. (2007) P01017 [nlin/0610017].
  6. [6]
    N. Beisert, V. Dippel and M. Staudacher, A novel long range spin chain and planar N = 4 super Yang- Mills, JHEP 07 (2004) 075 [hep-th/0405001] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  7. [7]
    S. Frolov, J. Plefka and M. Zamaklar, The AdS 5 × S 5 superstring in light-cone gauge and its Bethe equations, J. Phys. A 39 (2006) 13037 [hep-th/0603008] [SPIRES].MathSciNetGoogle Scholar
  8. [8]
    N. Beisert, The SU(2|2) dynamic S-matrix, Adv. Theor. Math. Phys. 12 (2008) 945 [hep-th/0511082] [SPIRES].MathSciNetGoogle Scholar
  9. [9]
    G. Arutyunov, S. Frolov and M. Zamaklar, The Zamolodchikov-Faddeev algebra for AdS 5 × S 5 superstring, JHEP 04 (2007) 002 [hep-th/0612229] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  10. [10]
    R.A. Janik, The AdS 5 × S 5 superstring worldsheet S-matrix and crossing symmetry, Phys. Rev. D 73 (2006) 086006 [hep-th/0603038] [SPIRES].MathSciNetADSGoogle Scholar
  11. [11]
    N. Beisert, R. Hernandez and E. Lopez, A crossing-symmetric phase for AdS 5 × S 5 strings, JHEP 11 (2006) 070 [hep-th/0609044] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  12. [12]
    N. Beisert, On the scattering phase for AdS 5 × S 5 strings, Mod. Phys. Lett. A 22 (2007) 415 [hep-th/0606214] [SPIRES].MathSciNetADSGoogle Scholar
  13. [13]
    N. Beisert, B. Eden and M. Staudacher, Transcendentality and crossing, J. Stat. Mech. (2007) P01021 [hep-th/0610251] [SPIRES].
  14. [14]
    G. Arutyunov and S. Frolov, On AdS 5 × S 5 string S-matrix, Phys. Lett. B 639 (2006) 378 [hep-th/0604043] [SPIRES].MathSciNetADSGoogle Scholar
  15. [15]
    N. Dorey, Magnon bound states and the AdS/CFT correspondence, J. Phys. A 39 (2006) 13119 [hep-th/0604175] [SPIRES].MathSciNetGoogle Scholar
  16. [16]
    G. Arutyunov and S. Frolov, On string S-matrix, bound states and TBA, JHEP 12 (2007) 024 [arXiv:0710.1568] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  17. [17]
    R. Roiban, Magnon bound-state scattering in gauge and string theory, JHEP 04 (2007) 048 [hep-th/0608049] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  18. [18]
    H.-Y. Chen, N. Dorey and K. Okamura, The asymptotic spectrum of the N = 4 super Yang-Mills spin chain, JHEP 03 (2007) 005 [hep-th/0610295] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  19. [19]
    N. Beisert, The S-matrix of AdS/CFT and Yangian symmetry, PoS SOLVAY (2006) 002 [arXiv:0704.0400] [SPIRES].
  20. [20]
    G. Arutyunov and S. Frolov, The S-matrix of string bound states, Nucl. Phys. B 804 (2008) 90 [arXiv:0803.4323] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  21. [21]
    M. de Leeuw, Bound states, Yangian symmetry and classical r-matrix for the AdS 5 × S 5 superstring, JHEP 06 (2008) 085 [arXiv:0804.1047] [SPIRES].CrossRefGoogle Scholar
  22. [22]
    G. Arutyunov, M. de Leeuw and A. Torrielli, The bound state S-matrix for AdS 5 × S 5 superstring, Nucl. Phys. B 819 (2009) 319 [arXiv:0902.0183] [SPIRES].CrossRefADSGoogle Scholar
  23. [23]
    D. Bernard, 2, An introduction to Yangian symmetries, Int. J. Mod. Phys. B 7 (1993) 3517 [hep-th/9211133] [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar
  24. [24]
    N.J. MacKay, Introduction to Yangian symmetry in integrable field theory, Int. J. Mod. Phys. A 20 (2005) 7189 [hep-th/0409183] [SPIRES].MathSciNetADSGoogle Scholar
  25. [25]
    D. Arnaudon, A. Molev, E. Ragoucy, On the R-matrix realization of Yangians and their representations, Ann. Henri Poincare 7 (2006) 1269 [math.QA/0511481v1].
  26. [26]
    A. Torrielli, Structure of the string R-matrix, J. Phys. A 42 (2009) 055204 [arXiv:0806.1299] [SPIRES].MathSciNetADSGoogle Scholar
  27. [27]
    G. Arutyunov, M. de Leeuw and A. Torrielli, On Yangian and long representations of the centrally extended SU(2|2) superalgebra, JHEP 06 (2010) 033 [arXiv:0912.0209] [SPIRES].CrossRefADSGoogle Scholar
  28. [28]
    M. Jimbo, Quantum R-matrix for the generalized toda system, Commun. Math. Phys. 102 (1986) 537 [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar
  29. [29]
    D.H. Correa and C.A.S. Young, Reflecting magnons from D7 and D5 branes, J. Phys. A 41 (2008) 455401 [arXiv:0808.0452] [SPIRES].MathSciNetADSGoogle Scholar
  30. [30]
    H.-Y. Chen, N. Dorey and K. Okamura, On the scattering of magnon boundstates, JHEP 11 (2006) 035 [hep-th/0608047] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  31. [31]
    W. Galleas, The Bethe Ansatz equations for reflecting magnons, Nucl. Phys. B 820 (2009) 664 [arXiv:0902.1681] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  32. [32]
    L. Palla, Issues on magnon reflection, Nucl. Phys. B 808 (2009) 205 [arXiv:0807.3646] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  33. [33]
    D.M. Hofman and J.M. Maldacena, Reflecting magnons, JHEP 11 (2007) 063 [arXiv:0708.2272] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  34. [34]
    C. Ahn, D. Bak and S.-J. Rey, Reflecting Magnon Bound States, JHEP 04 (2008) 050 [arXiv:0712.4144] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  35. [35]
    C. Ahn and R.I. Nepomechie, Yangian symmetry and bound states in AdS/CFT boundary scattering, JHEP 05 (2010) 016 [arXiv:1003.3361] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  36. [36]
    O. DeWolfe and N. Mann, Integrable open spin chains in defect conformal field theory, JHEP 04 (2004) 035 [hep-th/0401041] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  37. [37]
    T. Erler and N. Mann, Integrable open spin chains and the doubling trick in N = 2 SYM with fundamental matter, JHEP 01 (2006) 131 [hep-th/0508064] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  38. [38]
    T. McLoughlin and I. Swanson, Open string integrability and AdS/CFT, Nucl. Phys. B 723 (2005) 132 [hep-th/0504203] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  39. [39]
    Y. Susaki, Y. Takayama and K. Yoshida, Integrability and higher loops in AdS/dCFT correspondence, Phys. Lett. B 624 (2005) 115 [hep-th/0504209] [SPIRES].MathSciNetADSGoogle Scholar
  40. [40]
    K. Okamura, Y. Takayama and K. Yoshida, Open spinning strings and AdS/dCFT duality, JHEP 01 (2006) 112 [hep-th/0511139] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  41. [41]
    D.H. Correa and C.A.S. Young, Asymptotic Bethe equations for open boundaries in planar AdS/CFT, J. Phys. A 43 (2010) 145401 [arXiv:0912.0627] [SPIRES].MathSciNetADSGoogle Scholar
  42. [42]
    M. Kruczenski, D. Mateos, R.C. Myers and D.J. Winters, Meson spectroscopy in AdS/CFT with flavour, JHEP 07 (2003) 049 [hep-th/0304032] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  43. [43]
    P. Mattsson and P. Dorey, Boundary spectrum in the sine-Gordon model with Dirichlet boundary conditions, J. Phys. A 33 (2000) 9065 [hep-th/0008071] [SPIRES].MathSciNetADSGoogle Scholar
  44. [44]
    P. Dorey, R. Tateo and G. Watts, Generalisations of the Coleman-Thun mechanism and boundary reflection factors, Phys. Lett. B 448 (1999) 249 [hep-th/9810098] [SPIRES].ADSGoogle Scholar
  45. [45]
    G.W. Delius, N.J. MacKay and B.J. Short, Boundary remnant of Yangian symmetry and the structure of rational reflection matrices, Phys. Lett. B 522 (2001) 335 [hep-th/0109115] [SPIRES].MathSciNetADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2010

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of YorkHeslingtonU.K.
  2. 2.Vilnius University Institute of Theoretical Physics and AstronomyVilniusLithuania

Personalised recommendations