The point of E8 in F-theory GUTs

  • Jonathan J. Heckman
  • Alireza Tavanfar
  • Cumrun Vafa
Article

Abstract

We show that in F-theory GUTs, a natural explanation of flavor hierarchies in the quark and lepton sector requires a single point of E8 enhancement in the internal geometry, from which all Yukawa couplings originate. The monodromy group acting on the seven-brane configuration plays a key role in this analysis. Moreover, the E8 structure automatically leads to the existence of the additional fields and interactions needed for minimal gauge mediated supersymmetry breaking, and almost nothing else. Surprisingly, we find that in all but one Dirac neutrino scenario the messenger fields in the gauge mediated supersymmetry breaking sector transform as vector-like pairs in the \( 10 \oplus \overline {10} \) of SU(5). We also classify dark matter candidates available from this enhancement point, and rule out both annihilating and decaying dark matter scenarios as explanations for the recent experiments PAMELA, ATIC and FERMI. In F-theory GUT models, a 10–100 MeV mass gravitino remains as the prime candidate for dark matter, thus suggesting an astrophysical origin for recent experimental signals.

Keywords

Cosmology of Theories beyond the SM F-Theory Intersecting branes models GUT 

References

  1. [1]
    C. Beasley, J.J. Heckman and C. Vafa, GUT s and exceptional branes in F-theory — I, JHEP 01 (2009) 058 [arXiv:0802.3391] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  2. [2]
    C. Beasley, J.J. Heckman and C. Vafa, GUTs and exceptional branes in F-theory — II: experimental predictions, JHEP 01 (2009) 059 [arXiv:0806.0102] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  3. [3]
    J.J. Heckman and C. Vafa, F-theory, GUTs and the weak scale, JHEP 09 (2009) 079 [arXiv:0809.1098] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  4. [4]
    J.J. Heckman and C. Vafa, From F-theory GUTs to the LHC, arXiv:0809.3452 [SPIRES].
  5. [5]
    J.J. Heckman and C. Vafa, Flavor hierarchy from F-theory, Nucl. Phys. B 837 (2010) 137 [arXiv:0811.2417] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  6. [6]
    J.J. Heckman, A. Tavanfar and C. Vafa, Cosmology of F-theory GUTs, JHEP 04 (2010) 054 [arXiv:0812.3155] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  7. [7]
    J.J. Heckman, G.L. Kane, J. Shao and C. Vafa, The footprint of F-theory at the LHC, JHEP 10 (2009) 039 [arXiv:0903.3609] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  8. [8]
    V. Bouchard, J.J. Heckman, J. Seo and C. Vafa, F-theory and neutrinos: Kaluza-Klein dilution of flavor hierarchy, JHEP 01 (2010) 061 [arXiv:0904.1419] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  9. [9]
    J.J. Heckman and C. Vafa, CP violation and F-theory GUT s, arXiv:0904.3101 [SPIRES].
  10. [10]
    R. Donagi and M. Wijnholt, Model building with F-theory, arXiv:0802.2969 [SPIRES].
  11. [11]
    H. Hayashi, R. Tatar, Y. Toda, T. Watari and M. Yamazaki, New aspects of heterotic — F theory duality, Nucl. Phys. B 806 (2009) 224 [arXiv:0805.1057] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  12. [12]
    J.J. Heckman, J. Marsano, N. Saulina, S. Sch¨afer-Nameki and C. Vafa, Instantons and SUSY breaking in F-theory, arXiv:0808.1286 [SPIRES].
  13. [13]
    J. Marsano, N. Saulina and S. Sch¨afer-Nameki, Gauge mediation in F-theory GUT Models, Phys. Rev. D 80 (2009) 046006 [arXiv:0808.1571] [SPIRES].
  14. [14]
    R. Donagi and M. Wijnholt, Breaking GUT groups in F-theory, arXiv:0808.2223 [SPIRES].
  15. [15]
    J. Marsano, N. Saulina and S. Sch¨afer-Nameki, An instanton toolbox for F-theory model building, JHEP 01 (2010) 128 [arXiv:0808.2450] [SPIRES].
  16. [16]
    A. Font and L.E. Ibáñez, Yukawa structure from U(1) fluxes in F-theory grand unification, JHEP 02 (2009) 016 [arXiv:0811.2157] [SPIRES].CrossRefADSGoogle Scholar
  17. [17]
    R. Blumenhagen, V. Braun, T.W. Grimm and T. Weigand, GUT s in type IIB orientifold compactifications, Nucl. Phys. B 815 (2009) 1 [arXiv:0811.2936] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  18. [18]
    R. Blumenhagen, Gauge coupling unification in F-theory grand unified theories, Phys. Rev. Lett. 102 (2009) 071601 [arXiv:0812.0248] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  19. [19]
    J.L. Bourjaily, Local models in F-theory and M-theory with three generations, arXiv:0901.3785 [SPIRES].
  20. [20]
    H. Hayashi, T. Kawano, R. Tatar and T. Watari, Codimension-3 singularities and Yukawa couplings in F-theory, Nucl. Phys. B 823 (2009) 47 [arXiv:0901.4941] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  21. [21]
    B. Andreas and G. Curio, From local to global in F-theory model building, J. Geom. Phys. 60 (2010) 1089 [arXiv:0902.4143] [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar
  22. [22]
    C.-M. Chen and Y.-C. Chung, A note on local GUT models in F-theory, Nucl. Phys. B 824 (2010) 273 [arXiv:0903.3009] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  23. [23]
    R. Donagi and M. Wijnholt, Higgs bundles and UV completion in F-theory, arXiv:0904.1218 [SPIRES].
  24. [24]
    L. Randall and D. Simmons-Duffin, Quark and lepton flavor physics from F-theory, arXiv:0904.1584 [SPIRES].
  25. [25]
    J.L. Bourjaily, Effective field theories for local models in F-theory and M-theory, arXiv:0905.0142 [SPIRES].
  26. [26]
    R. Tatar, Y. Tsuchiya and T. Watari, Right-handed neutrinos in F-theory compactifications, Nucl. Phys. B 823 (2009) 1 [arXiv:0905.2289] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  27. [27]
    J. Jiang, T. Li, D.V. Nanopoulos and D. Xie, Flipped SU(5) × U(1)X models from F-theory, Nucl. Phys. B 830 (2010) 195 [arXiv:0905.3394] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  28. [28]
    A. Collinucci, New F-theory lifts II: permutation orientifolds and enhanced singularities, JHEP 04 (2010) 076 [arXiv:0906.0003] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  29. [29]
    R. Blumenhagen, T.W. Grimm, B. Jurke and T. Weigand, F-theory uplifts and GUTs, JHEP 09 (2009) 053 [arXiv:0906.0013] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  30. [30]
    R. Tatar and T. Watari, Proton decay, Yukawa couplings and underlying gauge symmetry in string theory, Nucl. Phys. B 747 (2006) 212 [hep-th/0602238] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  31. [31]
    O. Adriani et al., A new measurement of the antiproton-to-proton flux ratio up to 100 GeV in the cosmic radiation, Phys. Rev. Lett. 102 (2009) 051101 [arXiv:0810.4994] [SPIRES].CrossRefADSGoogle Scholar
  32. [32]
    PAMELA collaboration, O. Adriani et al., An anomalous positron abundance in cosmic rays with energies 1.5–100 GeV, Nature 458 (2009) 607 [arXiv:0810.4995] [SPIRES].CrossRefADSGoogle Scholar
  33. [33]
    J. Chang et al., An excess of cosmic ray electrons at energies of 300-800 GeV, Nature 456 (2008) 362 [SPIRES]. CrossRefADSGoogle Scholar
  34. [34]
    PPB-BETS collaboration, S. Torii et al., High-energy electron observations by PPB-BETS flight in Antarctica, arXiv:0809.0760 [SPIRES].
  35. [35]
    H.E.S.S. collaboration, F. Aharonian et al., The energy spectrum of cosmic-ray electrons at TeV energies, Phys. Rev. Lett. 101 (2008) 261104 [arXiv:0811.3894] [SPIRES].CrossRefADSGoogle Scholar
  36. [36]
    TheFermi LAT collaboration, A.A. Abdo et al., Measurement of the cosmic ray e + plus e spectrum from 20 GeV to 1 TeV with the Fermi Large Area Telescope, Phys. Rev. Lett. 102 (2009) 181101 [arXiv:0905.0025] [SPIRES].CrossRefADSGoogle Scholar
  37. [37]
    S.H. Katz and C. Vafa, Matter from geometry, Nucl. Phys. B 497 (1997) 146 [hep-th/9606086] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  38. [38]
    M. Ibe and R. Kitano, Gauge mediation in supergravity and gravitino dark matter, Phys. Rev. D 75 (2007) 055003 [hep-ph/0611111] [SPIRES].ADSGoogle Scholar
  39. [39]
    M. Ibe and R. Kitano, Sweet spot supersymmetry, JHEP 08 (2007) 016 [arXiv:0705.3686] [SPIRES]. CrossRefADSGoogle Scholar
  40. [40]
    T. Moroi, H. Murayama and M. Yamaguchi, Cosmological constraints on the light stable gravitino, Phys. Lett. B 303 (1993) 289 [SPIRES].ADSGoogle Scholar
  41. [41]
    J. Marsano, N. Saulina and S. Schäfer-Nameki, Monodromies, fluxes and compact three-generation F-theory GUTs, JHEP 08 (2009) 046 [arXiv:0906.4672] [SPIRES].CrossRefADSGoogle Scholar
  42. [42]
    M. Bershadsky and A. Johansen, Colliding singularities in F-theory and phase transitions, Nucl. Phys. B 489 (1997) 122 [hep-th/9610111] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  43. [43]
    E. Witten, Small instantons in string theory, Nucl. Phys. B 460 (1996) 541 [hep-th/9511030] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  44. [44]
    N. Seiberg and E. Witten, Comments on string dynamics in six dimensions, Nucl. Phys. B 471 (1996) 121 [hep-th/9603003] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  45. [45]
    D.R. Morrison and C. Vafa, Compactifications of F-theory on Calabi-Yau threefolds — II, Nucl. Phys. B 476 (1996) 437 [hep-th/9603161] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  46. [46]
    A. Klemm, P. Mayr and C. Vafa, BPS states of exceptional non-critical strings, hep-th/9607139 [SPIRES].
  47. [47]
    J.A. Minahan, D. Nemeschansky, C. Vafa and N.P. Warner, E-strings and N = 4 topological Yang-Mills theories, Nucl. Phys. B 527 (1998) 581 [hep-th/9802168] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  48. [48]
    J.A. Minahan and D. Nemeschansky, An N = 2 superconformal fixed point with E 6 global symmetry, Nucl. Phys. B 482 (1996) 142 [hep-th/9608047] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  49. [49]
    J.A. Minahan and D. Nemeschansky, Superconformal fixed points with E n global symmetry, Nucl. Phys. B 489 (1997) 24 [hep-th/9610076] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  50. [50]
    P.C. Argyres and N. Seiberg, S-duality in N = 2 supersymmetric gauge theories, JHEP 12 (2007) 088 [arXiv:0711.0054] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  51. [51]
    O. Aharony and Y. Tachikawa, A holographic computation of the central charges of D = 4, N = 2 SCFTs, JHEP 01 (2008) 037 [arXiv:0711.4532] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  52. [52]
    H. Georgi, Unparticle physics, Phys. Rev. Lett. 98 (2007) 221601 [hep-ph/0703260] [SPIRES]. CrossRefADSGoogle Scholar
  53. [53]
    B. Holdom, Two U(1)’s and epsilon charge shifts, Phys. Lett. B 166 (1986) 196 [SPIRES].ADSGoogle Scholar
  54. [54]
    K.S. Babu, C.F. Kolda and J. March-Russell, Leptophobic U(1)’s and the R bR c crisis, Phys. Rev. D 54 (1996) 4635 [hep-ph/9603212] [SPIRES].ADSGoogle Scholar
  55. [55]
    K.R. Dienes, C.F. Kolda and J. March-Russell, Kinetic mixing and the supersymmetric gauge hierarchy, Nucl. Phys. B 492 (1997) 104 [hep-ph/9610479] [SPIRES].ADSGoogle Scholar
  56. [56]
    K.S. Babu, C.F. Kolda and J. March-Russell, Implications of generalized ZZ′ mixing, Phys. Rev. D 57 (1998) 6788 [hep-ph/9710441] [SPIRES].ADSGoogle Scholar
  57. [57]
    D.E. Morrissey, D. Poland and K.M. Zurek, Abelian hidden sectors at a GeV, JHEP 07 (2009) 050 [arXiv:0904.2567] [SPIRES].CrossRefADSGoogle Scholar
  58. [58]
    P. Meade, M. Papucci, A. Strumia and T. Volansky, Dark matter interpretations of the electron/positron excesses after FERMI, Nucl. Phys. B 831 (2010) 178 [arXiv:0905.0480] [SPIRES]. CrossRefADSGoogle Scholar
  59. [59]
    P. Grajek, G. Kane, D. Phalen, A. Pierce and S. Watson, Is the PAMELA positron excess winos?, Phys. Rev. D 79 (2009) 043506 [arXiv:0812.4555] [SPIRES].ADSGoogle Scholar
  60. [60]
    J. Hisano, S. Matsumoto and M.M. Nojiri, Explosive dark matter annihilation, Phys. Rev. Lett. 92 (2004) 031303 [hep-ph/0307216] [SPIRES].CrossRefADSGoogle Scholar
  61. [61]
    J. Hisano, S. Matsumoto, M.M. Nojiri and O. Saito, Non-perturbative effect on dark matter annihilation and gamma ray signature from galactic center, Phys. Rev. D 71 (2005) 063528 [hep-ph/0412403] [SPIRES].ADSGoogle Scholar
  62. [62]
    M. Cirelli, A. Strumia and M. Tamburini, Cosmology and astrophysics of minimal dark matter, Nucl. Phys. B 787 (2007) 152 [arXiv:0706.4071] [SPIRES].CrossRefADSGoogle Scholar
  63. [63]
    N. Arkani-Hamed, D.P. Finkbeiner, T.R. Slatyer and N. Weiner, A theory of dark matter, Phys. Rev. D 79 (2009) 015014 [arXiv:0810.0713] [SPIRES].ADSGoogle Scholar
  64. [64]
    HESS collaboration, M. Vivier, Hess galactic center observations, talk presented ath the 44th Rencontres de Moriond, February 1–8, La Thuile, Italy (2009).Google Scholar
  65. [65]
    J. Hisano, M. Kawasaki, K. Kohri, T. Moroi and K. Nakayama, Cosmic rays from dark matter annihilation and Big-Bang nucleosynthesis, Phys. Rev. D 79 (2009) 083522 [arXiv:0901.3582] [SPIRES].ADSGoogle Scholar
  66. [66]
    A. Arvanitaki et al., A strophysical probes of unification, Phys. Rev. D 79 (2009) 105022 [arXiv:0812.2075] [SPIRES].ADSGoogle Scholar
  67. [67]
    F.A. Aharonian, Very high energy cosmic gamma radiation: a crucial window on the extreme universe, World Scientific, U.S.A. (2004), pag. 495.Google Scholar
  68. [68]
    D. Hooper, P. Blasi and P.D. Serpico, Pulsars as the sources of high energy cosmic ray positrons, JCAP 01 (2009) 025 [arXiv:0810.1527] [SPIRES].ADSGoogle Scholar
  69. [69]
    H. Yuksel, M.D. Kistler and T. Stanev, TeV gamma rays from Geminga and the origin of the GeV positron excess, Phys. Rev. Lett. 103 (2009) 051101 [arXiv:0810.2784] [SPIRES].CrossRefADSGoogle Scholar
  70. [70]
    S. Profumo, Dissecting Pamela (and ATIC) with Occam’s razor: existing, well-known pulsars naturally account for the ’anomalous’ cosmic-ray electron and positron data, arXiv:0812.4457 [SPIRES].
  71. [71]
    P. Blasi and P.D. Serpico, High-energy antiprotons from old supernova remnants, Phys. Rev. Lett. 103 (2009) 081103 [arXiv:0904.0871] [SPIRES].CrossRefADSGoogle Scholar
  72. [72]
    FERMI-LAT collaboration, D. Grasso et al., On possible interpretations of the high energy electron-positron spectrum measured by the Fermi Large Area Telescope, Astropart. Phys. 32 (2009) 140 [arXiv:0905.0636] [SPIRES].CrossRefADSGoogle Scholar
  73. [73]
    Particle Data Group collaboration, W.-M. Yao et al., The review of particle physics, J. Phys. G 33 (2006) 1. ADSGoogle Scholar
  74. [74]
    G. Jungman, M. Kamionkowski and K. Griest, Supersymmetric dark matter, Phys. Rept. 267 (1996) 195 [hep-ph/9506380] [SPIRES].CrossRefADSGoogle Scholar
  75. [75]
    Y. Cui, D.E. Morrissey, D. Poland and L. Randall, Candidates for inelastic dark matter, JHEP 05 (2009) 076 [arXiv:0901.0557] [SPIRES].CrossRefADSGoogle Scholar
  76. [76]
    CDMS collaboration, D.S. Akerib et al., New results from the cryogenic dark matter search experiment, Phys. Rev. D 68 (2003) 082002 [hep-ex/0306001] [SPIRES].ADSGoogle Scholar
  77. [77]
    D. Tucker-Smith and N. Weiner, Inelastic dark matter, Phys. Rev. D 64 (2001) 043502 [hep-ph/0101138] [SPIRES].ADSGoogle Scholar
  78. [78]
    P. Langacker, The physics of heavy Z′ gauge bosons, Rev. Mod. Phys. 81 (2008) 1199 [arXiv:0801.1345] [SPIRES].CrossRefADSGoogle Scholar
  79. [79]
    R. Allahverdi, B. Dutta, K. Richardson-McDaniel and Y. Santoso, A supersymmetric B−L dark matter model and the observed anomalies in the cosmic rays, Phys. Rev. D 79 (2009) 075005 [arXiv:0812.2196] [SPIRES].ADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2010

Authors and Affiliations

  • Jonathan J. Heckman
    • 1
  • Alireza Tavanfar
    • 1
  • Cumrun Vafa
    • 1
  1. 1.Jefferson Physical LaboratoryHarvard UniversityCambridgeU.S.A.

Personalised recommendations