Advertisement

Holographic studies of quasi-topological gravity

  • Robert C. Myers
  • Miguel F. Paulos
  • Aninda SinhaEmail author
Article

Abstract

Quasi-topological gravity is a new gravitational theory including curvaturecubed interactions and for which exact black hole solutions were constructed. In a holographic framework, classical quasi-topological gravity can be thought to be dual to the large N c limit of some non-supersymmetric but conformal gauge theory. We establish various elements of the AdS/CFT dictionary for this duality. This allows us to infer physical constraints on the couplings in the gravitational theory. Further we use holography to investigate hydrodynamic aspects of the dual gauge theory. In particular, we find that the minimum value of the shear-viscosity-to-entropy-density ratio for this model is η/s ≃ 0.4140/(4π).

Keywords

Gauge-gravity correspondence AdS-CFT Correspondence Black Holes in String Theory 

References

  1. [1]
    J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200] [SPIRES].zbMATHMathSciNetADSGoogle Scholar
  2. [2]
    O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri and Y. Oz, Large-N field theories, string theory and gravity, Phys. Rept. 323 (2000) 183 [hep-th/9905111] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  3. [3]
    G. Policastro, D.T. Son and A.O. Starinets, From AdS/CFT correspondence to hydrodynamics, JHEP 09 (2002) 043 [hep-th/0205052] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  4. [4]
    D.T. Son and A.O. Starinets, Minkowski-space correlators in AdS/CFT correspondence: Recipe and applications, JHEP 09 (2002) 042 [hep-th/0205051] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  5. [5]
    D.T. Son and A.O. Starinets, Viscosity, black holes and quantum field theory, Ann. Rev. Nucl. Part. Sci. 57 (2007) 95 [arXiv:0704.0240] [SPIRES].CrossRefADSGoogle Scholar
  6. [6]
    A. Buchel, J.T. Liu and A.O. Starinets, Coupling constant dependence of the shear viscosity in N = 4 supersymmetric Yang-Mills theory, Nucl. Phys. B 707 (2005) 56 [hep-th/0406264] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  7. [7]
    A. Buchel, Resolving disagreement for eta/s in a CFT plasma at finite coupling, Nucl. Phys. B 803 (2008) 166 [arXiv:0805.2683] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  8. [8]
    Y. Kats and P. Petrov, Effect of curvature squared corrections in AdS on the viscosity of the dual gauge theory, JHEP 01 (2009) 044 [arXiv:0712.0743] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  9. [9]
    R.C. Myers, M.F. Paulos and A. Sinha, Quantum corrections to eta/s, Phys. Rev. D 79 (2009) 041901 [arXiv:0806.2156] [SPIRES].ADSGoogle Scholar
  10. [10]
    A. Buchel, R.C. Myers, M.F. Paulos and A. Sinha, Universal holographic hydrodynamics at finite coupling, Phys. Lett. B 669 (2008) 364 [arXiv:0808.1837] [SPIRES].ADSGoogle Scholar
  11. [11]
    A. Buchel, R.C. Myers and A. Sinha, Beyond η/s = 1/4π, JHEP 03 (2009) 084 [arXiv:0812.2521] [SPIRES].CrossRefADSGoogle Scholar
  12. [12]
    A. Sinha and R.C. Myers, The viscosity bound in string theory, Nucl. Phys. A 830 (2009) 295c–298c [arXiv:0907.4798] [SPIRES].ADSGoogle Scholar
  13. [13]
    D.M. Hofman and J. Maldacena, Conformal collider physics: Energy and charge correlations, JHEP 05 (2008) 012 [arXiv:0803.1467] [SPIRES].CrossRefADSGoogle Scholar
  14. [14]
    D.M. Hofman, Higher derivative gravity, causality and positivity of energy in a UV complete QFT, Nucl. Phys. B 823 (2009) 174 [arXiv:0907.1625] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  15. [15]
    M. Brigante, H. Liu, R.C. Myers, S. Shenker and S. Yaida, The viscosity bound and causality violation, Phys. Rev. Lett. 100 (2008) 191601 [arXiv:0802.3318] [SPIRES].CrossRefADSGoogle Scholar
  16. [16]
    M. Brigante, H. Liu, R.C. Myers, S. Shenker and S. Yaida, Viscosity bound violation in higher derivative gravity, Phys. Rev. D 77 (2008) 126006 [arXiv:0712.0805] [SPIRES].ADSGoogle Scholar
  17. [17]
    A. Buchel and R.C. Myers, Causality of holographic hydrodynamics, JHEP 08 (2009) 016 [arXiv:0906.2922] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  18. [18]
    J. de Boer, M. Kulaxizi and A. Parnachev, AdS 7/CFT 6 , Gauss-Bonnet gravity and viscosity bound, JHEP 03 (2010) 087 [arXiv:0910.5347] [SPIRES].CrossRefGoogle Scholar
  19. [19]
    X.O. Camanho and J.D. Edelstein, Causality constraints in AdS/CFT from conformal collider physics and Gauss-Bonnet gravity, JHEP 04 (2010) 007 [arXiv:0911.3160] [SPIRES]CrossRefADSGoogle Scholar
  20. [20]
    A. Buchel et al., Holographic GB gravity in arbitrary dimensions, JHEP 03 (2010) 111 [arXiv:0911.4257] [SPIRES].CrossRefADSGoogle Scholar
  21. [21]
    X.-H. Ge and S.-J. Sin, Shear viscosity, instability and the upper bound of the Gauss-Bonnet coupling constant, JHEP 05 (2009) 051 [arXiv:0903.2527] [SPIRES].CrossRefADSGoogle Scholar
  22. [22]
    R.-G. Cai, Z.-Y. Nie and Y.-W. Sun, Shear viscosity from effective couplings of gravitons, Phys. Rev. D 78 (2008) 126007 [arXiv:0811.1665] [SPIRES].ADSGoogle Scholar
  23. [23]
    R.-G. Cai, Z.-Y. Nie, N. Ohta and Y.-W. Sun, Shear viscosity from Gauss-Bonnet gravity with a dilaton coupling, Phys. Rev. D 79 (2009) 066004 [arXiv:0901.1421] [SPIRES].ADSGoogle Scholar
  24. [24]
    M.J. Duff, Observations on conformal anomalies, Nucl. Phys. B 125 (1977) 334 [SPIRES].CrossRefADSGoogle Scholar
  25. [25]
    S. Nojiri and S.D. Odintsov, On the conformal anomaly from higher derivative gravity in AdS/CFT correspondence, Int. J. Mod. Phys. A 15 (2000) 413 [hep-th/9903033] [SPIRES].MathSciNetADSGoogle Scholar
  26. [26]
    M. Blau, K.S. Narain and E. Gava, On subleading contributions to the AdS/CFT trace anomaly, JHEP 09 (1999) 018 [hep-th/9904179] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  27. [27]
    X.-H. Ge, S.-J. Sin, S.-F. Wu and G.-H. Yang, Shear viscosity and instability from third order Lovelock gravity, Phys. Rev. D 80 (2009) 104019 [arXiv:0905.2675] [SPIRES].ADSGoogle Scholar
  28. [28]
    J. de Boer, M. Kulaxizi and A. Parnachev, Holographic lovelock gravities and black holes, JHEP 06 (2010) 008 [arXiv:0912.1877] [SPIRES].CrossRefGoogle Scholar
  29. [29]
    X.O. Camanho and J.D. Edelstein, Causality in AdS/CFT and Lovelock theory, JHEP 06 (2010) 099 [arXiv:0912.1944] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  30. [30]
    F.-W. Shu, The quantum viscosity bound in lovelock gravity, Phys. Lett. B 685 (2010) 325 [arXiv:0910.0607] [SPIRES].ADSGoogle Scholar
  31. [31]
    R.C. Myers and A. Sinha, Seeing a c-theorem with holography, arXiv:1006.1263 [SPIRES].
  32. [32]
    R.C. Myers and A. Sinha, Anomalies, central charges and holography, to appear.Google Scholar
  33. [33]
    C. Imbimbo, A. Schwimmer, S. Theisen and S. Yankielowicz, Diffeomorphisms and holographic anomalies, Class. Quant. Grav. 17 (2000) 1129 [hep-th/9910267] [SPIRES].zbMATHCrossRefMathSciNetADSGoogle Scholar
  34. [34]
    A. Schwimmer and S. Theisen, Universal features of holographic anomalies, JHEP 10 (2003) 001 [hep-th/0309064] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  35. [35]
    A. Schwimmer and S. Theisen, Entanglement entropy, trace anomalies and holography, Nucl. Phys. B 801 (2008) 1 [arXiv:0802.1017] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  36. [36]
    R.C. Myers and B. Robinson, Black Holes in Quasi-topological Gravity, arXiv:1003.5357 [SPIRES].
  37. [37]
    I. Fouxon, G. Betschart and J.D. Bekenstein, The bound on viscosity and the generalized second law of thermodynamics, Phys. Rev. D 77 (2008) 024016 [arXiv:0710.1429] [SPIRES].MathSciNetADSGoogle Scholar
  38. [38]
    H. Liu and A.A. Tseytlin, D = 4 super Yang-Mills, D = 5 gauged supergravity and D = 4 conformal supergravity, Nucl. Phys. B 533 (1998) 88 [hep-th/9804083] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  39. [39]
    G. Arutyunov and S. Frolov, Three-point Green function of the stress-energy tensor in the AdS/CFT correspondence, Phys. Rev. D 60 (1999) 026004 [hep-th/9901121] [SPIRES].MathSciNetADSGoogle Scholar
  40. [40]
    A. Sinha, On the new massive gravity and AdS/CFT, JHEP 06 (2010) 061 [arXiv:1003.0683] [SPIRES].CrossRefADSGoogle Scholar
  41. [41]
    I. Gullu, T.C. Sisman and B. Tekin, Born-Infeld extension of new massive gravity, Class. Quant. Grav. 27 (2010) 162001 [arXiv:1003.3935] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  42. [42]
    J. Oliva and S. Ray, A new cubic theory of gravity in five dimensions: Black hole, Birkhoff’s theorem and C-function, arXiv:1003.4773 [SPIRES].
  43. [43]
    J. Oliva and S. Ray, A classification of six derivative lagrangians of gravity and static spherically symmetric solutions, arXiv:1004.0737 [SPIRES].
  44. [44]
    M. Henningson and K. Skenderis, The holographic Weyl anomaly, JHEP 07 (1998) 023 [hep-th/9806087] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  45. [45]
    M. Henningson and K. Skenderis, Holography and the Weyl anomaly, Fortsch. Phys. 48 (2000) 125 [hep-th/9812032] [SPIRES].zbMATHCrossRefMathSciNetADSGoogle Scholar
  46. [46]
    V.K. Dobrev, E.K. Khristova, V.B. Petkova and D.B. Stamenov, Conformal covariant operator product expansion of two spin 1/2 fields, Bulg. J. Phys. 1 (1974) 42.Google Scholar
  47. [47]
    V.K. Dobrev, G. Mack, V.B. Petkova, S.G. Petrova and I.T. Todorov, Harmonic analysis on the N-dimensional Lorentz group and its application to conformal quantum field theory, in Lecture Notes in Physics 63 (1977) 280 [SPIRES].
  48. [48]
    I.T. Todorov, M.C. Mintchev and V.B. Petkova, Conformal invariance in quantum field theory, Sc. Norm. Sup., Pisa Italy (1978), pg. 273 [SPIRES].
  49. [49]
    H. Osborn and A.C. Petkou, Implications of conformal invariance in field theories for general dimensions, Ann. Phys. 231 (1994) 311 [hep-th/9307010] [SPIRES].zbMATHCrossRefMathSciNetADSGoogle Scholar
  50. [50]
    D. Anselmi, M.T. Grisaru and A. Johansen, A critical behaviour of anomalous currents, electric-magnetic universality and CFT 4, Nucl. Phys. B 491 (1997) 221 [hep-th/9601023] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  51. [51]
    N. Banerjee and S. Dutta, Shear viscosity to entropy density ratio in six derivative gravity, JHEP 07 (2009) 024 [arXiv:0903.3925] [SPIRES].CrossRefADSGoogle Scholar
  52. [52]
    J. Erdmenger and H. Osborn, Conserved currents and the energy-momentum tensor in conformally invariant theories for general dimensions, Nucl. Phys. B 483 (1997) 431 [hep-th/9605009] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  53. [53]
    S.S. Gubser and I.R. Klebanov, Absorption by branes and Schwinger terms in the world volume theory, Phys. Lett. B 413 (1997) 41 [hep-th/9708005] [SPIRES].MathSciNetADSGoogle Scholar
  54. [54]
    .T. Horowitz and N. Itzhaki, Black holes, shock waves and causality in the AdS/CFT correspondence, JHEP 02 (1999) 010 [hep-th/9901012] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  55. [55]
    G.T. Horowitz and A.R. Steif, Space-time singularities in string theory, Phys. Rev. Lett. 64 (1990) 260 [SPIRES].zbMATHCrossRefMathSciNetADSGoogle Scholar
  56. [56]
    J.I. Latorre and H. Osborn, Modified weak energy condition for the energy momentum tensor in quantum field theory, Nucl. Phys. B 511 (1998) 737 [hep-th/9703196] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  57. [57]
    L. Brillouin, Wave propagation and group velocity, Academic Press (1960).Google Scholar
  58. [58]
    R. Fox, C.G. Kuper and S.G. Lipson, Faster-than-light group velocities and causality violation, Proc. Roy. Soc. Lond. A 316 (1970) 515.ADSGoogle Scholar
  59. [59]
    E. Krotscheck and W. Kundt, Causality criteria, Commun. Math. Phys. 60 (1978) 171.CrossRefMathSciNetADSGoogle Scholar
  60. [60]
    N. Iqbal and H. Liu, Universality of the hydrodynamic limit in AdS/CFT and the membrane paradigm, Phys. Rev. D 79 (2009) 025023 [arXiv:0809.3808] [SPIRES].ADSGoogle Scholar
  61. [61]
    N. Banerjee and S. Dutta, Higher derivative corrections to shear viscosity from graviton’s effective coupling, JHEP 03 (2009) 116 [arXiv:0901.3848] [SPIRES].CrossRefADSGoogle Scholar
  62. [62]
    R.C. Myers, M.F. Paulos and A. Sinha, Holographic hydrodynamics with a chemical potential, JHEP 06 (2009) 006 [arXiv:0903.2834] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  63. [63]
    M.F. Paulos, Transport coefficients, membrane couplings and universality at extremality, JHEP 02 (2010) 067 [arXiv:0910.4602] [SPIRES].CrossRefADSGoogle Scholar
  64. [64]
    R.C. Myers, A.O. Starinets and R.M. Thomson, Holographic spectral functions and diffusion constants for fundamental matter, JHEP 11 (2007) 091 [arXiv:0706.0162] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  65. [65]
    R. Gregory and R. Laflamme, Black strings and p-branes are unstable, Phys. Rev. Lett. 70 (1993) 2837 [hep-th/9301052] [SPIRES].zbMATHCrossRefMathSciNetADSGoogle Scholar
  66. [66]
    K.M. Case, Singular potentials, Phys. Rev. 80 (1950) 797.zbMATHCrossRefMathSciNetADSGoogle Scholar
  67. [67]
    V. de Alfaro, S. Fubini and G. Furlan, Conformal invariance in quantum mechanics, Nuovo Cim. A 34 (1976) 569 [SPIRES].CrossRefADSGoogle Scholar
  68. [68]
    S.R. Beane et al., Singular potentials and limit cycles, Phys. Rev. A 64 (2001) 042103 [quant-ph/0010073] [SPIRES].ADSGoogle Scholar
  69. [69]
    L.D. Landau, E.M. Lifshitz, Quantum mechanics: non-relativistic theory, Pergamon Press (1977).Google Scholar
  70. [70]
    M. Kulaxizi and A. Parnachev, Supersymmetry constraints in holographic gravities, arXiv:0912.4244 [SPIRES].
  71. [71]
    T. Banks and A. Zaks, On the phase structure of vector-like gauge theories with massless fermions, Nucl. Phys. B 196 (1982) 189 [SPIRES].CrossRefADSGoogle Scholar
  72. [72]
    F. Sannino, Dynamical Stabilization of the Fermi scale: phase diagram of strongly coupled theories for (Minimal) walking technicolor and unparticles, arXiv:0804.0182 [SPIRES].
  73. [73]
    F. Sannino, Phase Diagrams of Strongly Interacting Theories, arXiv:1003.0289 [SPIRES].
  74. [74]
    F. Sannino, Conformal dynamics for TeV physics and cosmology, arXiv:0911.0931 [SPIRES].
  75. [75]
    E. Poppitz and M. Ünsal, Conformality or confinement: (IR)relevance of topological excitations, JHEP 09 (2009) 050 [arXiv:0906.5156] [SPIRES].CrossRefADSGoogle Scholar
  76. [76]
    E. Poppitz and M. Ünsal, Conformality or confinement (II): one-flavor CFTs and mixed-representation QCD, JHEP 12 (2009) 011 [arXiv:0910.1245] [SPIRES].CrossRefADSGoogle Scholar
  77. [77]
    U. Gürsoy and E. Kiritsis, Exploring improved holographic theories for QCD: part I, JHEP 02 (2008) 032 [arXiv:0707.1324] [SPIRES].CrossRefGoogle Scholar
  78. [78]
    U. Gürsoy, E. Kiritsis and F. Nitti, Exploring improved holographic theories for QCD: part II, JHEP 02 (2008) 019 [arXiv:0707.1349] [SPIRES].CrossRefGoogle Scholar
  79. [79]
    M. Jarvinen and F. Sannino, Holographic conformal window - a bottom up approach, JHEP 05 (2010) 041 [arXiv:0911.2462] [SPIRES].CrossRefADSGoogle Scholar
  80. [80]
    F. Bigazzi, R. Casero, A.L. Cotrone, E. Kiritsis and A. Paredes, Non-critical holography and four-dimensional CFT’s with fundamentals, JHEP 10 (2005) 012 [hep-th/0505140] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  81. [81]
    R. Brustein and A.J.M. Medved, The ratio of shear viscosity to entropy density in generalized theories of gravity, Phys. Rev. D 79 (2009) 021901 [arXiv:0808.3498] [SPIRES].ADSGoogle Scholar
  82. [82]
    M. Paulos, Lovelock theories, holography and the fate of the viscosity bound.,unpublished.Google Scholar
  83. [83]
    X.O. Camanho, J.D. Edelstein and M. Paulos, in preparation.Google Scholar
  84. [84]
    D. Lovelock, The Einstein tensor and its generalizations, J. Math. Phys. 12 (1971) 498 [SPIRES].zbMATHCrossRefMathSciNetADSGoogle Scholar
  85. [85]
    D. Lovelock, Divergence-free tensorial concomitants, Aequationes Math. 4 (1970) 127.zbMATHCrossRefMathSciNetGoogle Scholar
  86. [86]
    G.T. Horowitz and R.C. Myers, The AdS/CFT correspondence and a new positive energy conjecture for general relativity, Phys. Rev. D 59 (1998) 026005 [hep-th/9808079] [SPIRES].MathSciNetADSGoogle Scholar
  87. [87]
    M. Henneaux, C. Teitelboim and J. Zanelli, Quantum mechanics for multivalued Hamiltonians, Phys. Rev. A 36 (1987) 4417 [SPIRES].MathSciNetADSGoogle Scholar
  88. [88]
    C. Teitelboim and J. Zanelli, Dimensionally continued topological gravitation theory in Hamiltonian form, Class. Quantum Grav. 4 (1987) L125.CrossRefMathSciNetADSGoogle Scholar
  89. [89]
    J. Alanen and K. Kajantie, Thermodynamics of a field theory with infrared fixed point from gauge/gravity duality, Phys. Rev. D 81 (2010) 046003 [arXiv:0912.4128] [SPIRES].ADSGoogle Scholar
  90. [90]
    J. Alanen, K. Kajantie and K. Tuominen, Thermodynamics of quasi conformal theories from gauge/gravity duality, arXiv:1003.5499 [SPIRES].

Copyright information

© SISSA, Trieste, Italy 2010

Authors and Affiliations

  • Robert C. Myers
    • 1
  • Miguel F. Paulos
    • 2
  • Aninda Sinha
    • 1
    Email author
  1. 1.Perimeter Institute for Theoretical PhysicsWaterlooCanada
  2. 2.Department of Applied Mathematics and Theoretical PhysicsCambridgeU.K.

Personalised recommendations