Advertisement

Generalized metric formulation of double field theory

  • Olaf Hohm
  • Chris Hull
  • Barton Zwiebach
Article

Abstract

The generalized metric is a T-duality covariant symmetric matrix constructed from the metric and two-form gauge field and arises in generalized geometry. We view it here as a metric on the doubled spacetime and use it to give a simple formulation with manifest T-duality of the double field theory that describes the massless sector of closed strings. The gauge transformations are written in terms of a generalized Lie derivative whose commutator algebra is defined by a double field theory extension of the Courant bracket.

Keywords

Gauge Symmetry Space-Time Symmetries Global Symmetries String Duality 

References

  1. [1]
    A. Giveon, M. Porrati and E. Rabinovici, Target space duality in string theory, Phys. Rept. 244 (1994) 77 [hep-th/9401139] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  2. [2]
    C. Hull and B. Zwiebach, Double field theory, JHEP 09 (2009) 099 [arXiv:0904.4664] [SPIRES]. CrossRefMathSciNetADSGoogle Scholar
  3. [3]
    C. Hull and B. Zwiebach, The gauge algebra of double field theory and Courant brackets, JHEP 09 (2009) 090 [arXiv:0908.1792] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  4. [4]
    O. Hohm, C. Hull and B. Zwiebach, Background independent action for double field theory, JHEP 07 (2010) 016 [arXiv:1003.5027] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  5. [5]
    T. Kugo and B. Zwiebach, Target space duality as a symmetry of string field theory, Prog. Theor. Phys. 87 (1992) 801 [hep-th/9201040] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  6. [6]
    B. Zwiebach, Closed string field theory: quantum action and the B-V master equation, Nucl. Phys. B 390 (1993) 33 [hep-th/9206084] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  7. [7]
    A.A. Tseytlin, Duality symmetric formulation of string world sheet dynamics, Phys. Lett. B 242 (1990) 163 [SPIRES].MathSciNetADSGoogle Scholar
  8. [8]
    A.A. Tseytlin, Duality symmetric closed string theory and interacting chiral scalars, Nucl. Phys. B 350 (1991) 395 [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  9. [9]
    W. Siegel, Superspace duality in low-energy superstrings, Phys. Rev. D 48 (1993) 2826 [hep-th/9305073] [SPIRES].ADSGoogle Scholar
  10. [10]
    W. Siegel, Two vierbein formalism for string inspired axionic gravity, Phys. Rev. D 47 (1993) 5453 [hep-th/9302036] [SPIRES].ADSGoogle Scholar
  11. [11]
    A. Giveon, E. Rabinovici and G. Veneziano, Duality in string background space, Nucl. Phys. B 322 (1989) 167 [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  12. [12]
    M.J. Duff, Duality rotations in string theory, Nucl. Phys. B 335 (1990) 610 [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  13. [13]
    J. Maharana and J.H. Schwarz, Noncompact symmetries in string theory, Nucl. Phys. B 390 (1993) 3 [hep-th/9207016] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  14. [14]
    K.A. Meissner and G. Veneziano, Symmetries of cosmological superstring vacua, Phys. Lett. B 267 (1991) 33 [SPIRES].MathSciNetADSGoogle Scholar
  15. [15]
    K.A. Meissner and G. Veneziano, Manifestly O(d, d) invariant approach to space-time dependent string vacua, Mod. Phys. Lett. A 6 (1991) 3397 [hep-th/9110004] [SPIRES].MathSciNetADSGoogle Scholar
  16. [16]
    A. Kleinschmidt and H. Nicolai, E 10 and SO(9, 9) invariant supergravity, JHEP 07 (2004) 041 [hep-th/0407101] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  17. [17]
    N. Hitchin, Generalized Calabi-Yau manifolds, Quart. J. Math. Oxford Ser. 54 (2003) 281 [math/0209099].zbMATHCrossRefMathSciNetGoogle Scholar
  18. [18]
    N. Hitchin, Brackets, forms and invariant functionals, math/0508618.
  19. [19]
    M. Gualtieri, Generalized complex geometry, Ph.D. thesis, Oxford University, Oxford, U.K. (2004), math/0401221.
  20. [20]
    T. Courant, Dirac manifolds, Trans. Amer. Math. Soc. 319 (1990) 631.zbMATHCrossRefMathSciNetGoogle Scholar
  21. [21]
    C.M. Hull, A geometry for non-geometric string backgrounds, JHEP 10 (2005) 065 [hep-th/0406102] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  22. [22]
    M. Graña, R. Minasian, M. Petrini and D. Waldram, T-duality, Generalized Geometry and Non-Geometric Backgrounds, JHEP 04 (2009) 075 [arXiv:0807.4527] [SPIRES].CrossRefADSGoogle Scholar
  23. [23]
    C. Hillmann, Generalized E(7(7)) coset dynamics and D = 11 supergravity, JHEP 03 (2009) 135 [arXiv:0901.1581] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  24. [24]
    A.B. Borisov and V.I. Ogievetsky, Theory of dynamical affine and conformal symmetries as gravity theory of the gravitational field, Theor. Math. Phys. 21 (1975) 1179 [SPIRES].CrossRefGoogle Scholar
  25. [25]
    P.C. West, Hidden superconformal symmetry in M-theory, JHEP 08 (2000) 007 [hep-th/0005270] [SPIRES].CrossRefADSGoogle Scholar
  26. [26]
    P.C. West, E 11 , SL(32) and central charges, Phys. Lett. B 575 (2003) 333 [hep-th/0307098] [SPIRES]. ADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2010

Authors and Affiliations

  1. 1.Center for Theoretical PhysicsMassachusetts Institute of TechnologyCambridgeU.S.A.
  2. 2.The Blackett LaboratoryImperial College LondonLondonU.K.

Personalised recommendations