Quantum field theories of arbitrary-spin massive multiplets and Palatini quantum gravity


We formulate quantum field theories of massive fields of arbitrary spins. The presence of both physical and fake particles, organized into multiplets, makes it possible to fulfill the requirements of locality, unitarity and renormalizability at the same time. The theories admit cubic and quartic self-interactions and can be coupled to quantum gravity and gauge fields. The simplest irreducible bosonic and fermionic multiplets are made of towers of alternating physical and fake particles. Their mass spectrum is constrained by RG invariant relations and depends on just one or two masses. The fixed points of the renormalization-group flow are scale invariant, but not necessarily conformal invariant. The Palatini version of quantum gravity with fakeons is equivalent to the non-Palatini one coupled to a peculiar multiplet of order 3. As a consequence, it is equally renormalizable and unitary.

A preprint version of the article is available at ArXiv.


  1. [1]

    A. Proca, Sur la theorie ondulatoire des electrons positifs et negatifs, J. Phys. Radium 7 (1936) 347 [INSPIRE].

  2. [2]

    A. Proca, Sur la théorie du positon, C. R. Acad. Sci. Paris 202 (1936) 1366.

  3. [3]

    M. Fierz and W. Pauli, On relativistic wave equations for particles of arbitrary spin in an electromagnetic field, Proc. Roy. Soc. Lond. A 173 (1939) 211.

  4. [4]

    W. Rarita and J. Schwinger, On a theory of particles with half integral spin, Phys. Rev. 60 (1941) 61 [INSPIRE].

  5. [5]

    N. Arkani-Hamed, H. Georgi and M.D. Schwartz, Effective field theory for massive gravitons and gravity in theory space, Annals Phys. 305 (2003) 96 [hep-th/0210184] [INSPIRE].

  6. [6]

    P. Creminelli, A. Nicolis, M. Papucci and E. Trincherini, Ghosts in massive gravity, JHEP 09 (2005) 003 [hep-th/0505147] [INSPIRE].

  7. [7]

    D.G. Boulware and S. Deser, Can gravitation have a finite range?, Phys. Rev. D 6 (1972) 3368 [INSPIRE].

  8. [8]

    C. de Rham and G. Gabadadze, Generalization of the Fierz-Pauli action, Phys. Rev. D 82 (2010) 044020 [arXiv:1007.0443] [INSPIRE].

  9. [9]

    C. de Rham, G. Gabadadze and A.J. Tolley, Resummation of massive gravity, Phys. Rev. Lett. 106 (2011) 231101 [arXiv:1011.1232] [INSPIRE].

  10. [10]

    S.F. Hassan and R.A. Rosen, Resolving the ghost problem in non-linear massive gravity, Phys. Rev. Lett. 108 (2012) 041101 [arXiv:1106.3344] [INSPIRE].

  11. [11]

    J. Bonifacio and K. Hinterbichler, Unitarization from geometry, JHEP 12 (2019) 165 [arXiv:1910.04767] [INSPIRE].

  12. [12]

    S.F. Hassan and R.A. Rosen, Bimetric gravity from ghost-free massive gravity, JHEP 02 (2012) 126 [arXiv:1109.3515] [INSPIRE].

  13. [13]

    A. Schmidt-May and M. von Strauss, Recent developments in bimetric theory, J. Phys. A 49 (2016) 183001 [arXiv:1512.00021] [INSPIRE].

  14. [14]

    D. Anselmi, On the quantum field theory of the gravitational interactions, JHEP 06 (2017) 086 [arXiv:1704.07728] [INSPIRE].

  15. [15]

    D. Anselmi, Fakeons and Lee-Wick models, JHEP 02 (2018) 141 [arXiv:1801.00915] [INSPIRE].

  16. [16]

    D. Anselmi, The quest for purely virtual quanta: fakeons versus Feynman-Wheeler particles, JHEP 03 (2020) 142 [arXiv:2001.01942] [INSPIRE].

  17. [17]

    D. Anselmi and M. Piva, A new formulation of Lee-Wick quantum field theory, JHEP 06 (2017) 066 [arXiv:1703.04584] [INSPIRE].

  18. [18]

    C.G. Bollini and M.C. Rocca, The Wheeler propagator, Int. J. Theor. Phys. 37 (1998) 2877 [hep-th/9807010] [INSPIRE].

  19. [19]

    J.A. Wheeler and R.P. Feynman, Interaction with the absorber as the mechanism of radiation, Rev. Mod. Phys. 17 (1945) 175.

  20. [20]

    J.A. Wheeler and R.P. Feynman, Classical electrodynamics in terms of direct interparticle action, Rev. Mod. Phys. 21 (1949) 425 [INSPIRE].

  21. [21]

    D. Anselmi and M. Piva, The ultraviolet behavior of quantum gravity, JHEP 05 (2018) 027 [arXiv:1803.07777] [INSPIRE].

  22. [22]

    D. Anselmi and M. Piva, Quantum gravity, fakeons and microcausality, JHEP 11 (2018) 021 [arXiv:1806.03605] [INSPIRE].

  23. [23]

    D. Anselmi, E. Bianchi and M. Piva, Predictions of quantum gravity in inflationary cosmology: effects of the Weyl-squared term, to appear in JHEP, arXiv:2005.10293 [INSPIRE].

  24. [24]

    CMB-S4 collaboration, CMB-S4 science book, first edition, arXiv:1610.02743 [INSPIRE].

  25. [25]

    R. Percacci and E. Sezgin, New class of ghost- and tachyon-free metric affine gravities, Phys. Rev. D 101 (2020) 084040 [arXiv:1912.01023] [INSPIRE].

  26. [26]

    M.A. Vasiliev, Consistent equation for interacting gauge fields of all spins in (3 + 1)-dimensions, Phys. Lett. B 243 (1990) 378 [INSPIRE].

  27. [27]

    M.A. Vasiliev, Properties of equations of motion of interacting gauge fields of all spins in (3 + 1)-dimensions, Class. Quant. Grav. 8 (1991) 1387 [INSPIRE].

  28. [28]

    N. Boulanger, E. Sezgin and P. Sundell, 4D higher spin gravity with dynamical two-form as a Frobenius-Chern-Simons gauge theory, arXiv:1505.04957 [INSPIRE].

  29. [29]

    R. Bonezzi, N. Boulanger, E. Sezgin and P. Sundell, Frobenius-Chern-Simons gauge theory, J. Phys. A 50 (2017) 055401 [arXiv:1607.00726] [INSPIRE].

  30. [30]

    D. Ponomarev and E.D. Skvortsov, Light-front higher-spin theories in flat space, J. Phys. A 50 (2017) 095401 [arXiv:1609.04655] [INSPIRE].

  31. [31]

    E.D. Skvortsov, T. Tran and M. Tsulaia, Quantum chiral higher spin gravity, Phys. Rev. Lett. 121 (2018) 031601 [arXiv:1805.00048] [INSPIRE].

  32. [32]

    D. Anselmi, Fakeons, microcausality and the classical limit of quantum gravity, Class. Quant. Grav. 36 (2019) 065010 [arXiv:1809.05037] [INSPIRE].

  33. [33]

    D. Anselmi and A. Marino, Fakeons and microcausality: light cones, gravitational waves and the Hubble constant, Class. Quant. Grav. 37 (2020) 095003 [arXiv:1909.12873] [INSPIRE].

  34. [34]

    D. Anselmi, Irreversibility and higher spin conformal field theory, Class. Quant. Grav. 17 (2000) 2847 [hep-th/9912122] [INSPIRE].

  35. [35]

    H. Haberzettl, Propagation of a massive spin 3/2 particle, nucl-th/9812043 [INSPIRE].

  36. [36]

    R.E. Cutkosky, Singularities and discontinuities of Feynman amplitudes, J. Math. Phys. 1 (1960) 429 [INSPIRE].

  37. [37]

    M.J.G. Veltman, Unitarity and causality in a renormalizable field theory with unstable particles, Physica 29 (1963) 186 [INSPIRE].

  38. [38]

    G. ’t Hooft and M. Veltman, Diagrammar, CERN-73-09 (1973).

  39. [39]

    M. Veltman, Diagrammatica. the path to Feynman rules, Cambridge University Press, Cambridge U.K. (1994).

  40. [40]

    D. Anselmi, Aspects of perturbative unitarity, Phys. Rev. D 94 (2016) 025028 [arXiv:1606.06348] [INSPIRE].

  41. [41]

    D. Anselmi, D.Z. Freedman, M.T. Grisaru and A.A. Johansen, Nonperturbative formulas for central functions of supersymmetric gauge theories, Nucl. Phys. B 526 (1998) 543 [hep-th/9708042] [INSPIRE].

  42. [42]

    D.J. Gross and A. Neveu, Dynamical symmetry breaking in asymptotically free field theories, Phys. Rev. D 10 (1974) 3235 [INSPIRE].

  43. [43]

    G. Parisi, The theory of nonrenormalizable interactions. 1. The large N expansion, Nucl. Phys. B 100 (1975) 368 [INSPIRE].

  44. [44]

    D.J. Gross, Applications of the renormalization group to high-energy physics, in Les Houches, Session XXVIII, Methods in Field Theory, R. Balian and J. Zinn-Justin eds., North Holland Publishing Company, Amsterdam The Netherlands (1976).

  45. [45]

    B. Rosenstein, B. Warr and S.H. Park, Dynamical symmetry breaking in four-fermion interaction models, Phys. Rep. 205 (1991) 59.

  46. [46]

    D. Anselmi, Large N expansion, conformal field theory and renormalization group flows in three-dimensions, JHEP 06 (2000) 042 [hep-th/0005261] [INSPIRE].

  47. [47]

    D. Anselmi, ‘Integrability’ of RG flows and duality in three-dimensions in the 1/N expansion, Nucl. Phys. B 658 (2003) 440 [hep-th/0210123] [INSPIRE].

  48. [48]

    G. Veneziano, Some aspects of a unified approach to gauge, dual and Gribov theories, Nucl. Phys. B 117 (1976) 519 [INSPIRE].

  49. [49]

    T. Banks and A. Zaks, On the phase structure of vector-like gauge theories with massless fermions, Nucl. Phys. B 196 (1982) 189.

  50. [50]

    A. Palatini, Deduzione invariantiva delle equazioni gravitazionali dal principio di Hamilton, Rend. Circ. Mat. Palermo 43 (1919) 203.

  51. [51]

    A. Einstein, Einheitliche Feldtheorie von Gravitation und Elektrizit¨at, Sitz. Pruess. Akad. Wiss. (1925) 414.

  52. [52]

    R. Percacci, The Higgs phenomenon in quantum gravity, Nucl. Phys. B 353 (1991) 271 [arXiv:0712.3545].

  53. [53]

    Planck collaboration, Planck 2018 results. X. Constraints on inflation, arXiv:1807.06211 [INSPIRE].

  54. [54]

    D.J.H. Chung, E.W. Kolb and A. Riotto, Superheavy dark matter, Phys. Rev. D 59 (1998) 023501 [hep-ph/9802238] [INSPIRE].

  55. [55]

    D.J.H. Chung, P. Crotty, E.W. Kolb and A. Riotto, On the gravitational production of superheavy dark matter, Phys. Rev. D 64 (2001) 043503 [hep-ph/0104100] [INSPIRE].

  56. [56]

    L. Marzola, M. Raidal and F.R. Urban, Oscillating spin-2 dark matter, Phys. Rev. D 97 (2018) 024010 [arXiv:1708.04253] [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

Author information



Corresponding author

Correspondence to Damiano Anselmi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2006.01163

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Anselmi, D. Quantum field theories of arbitrary-spin massive multiplets and Palatini quantum gravity. J. High Energ. Phys. 2020, 176 (2020). https://doi.org/10.1007/JHEP07(2020)176

Download citation


  • Beyond Standard Model
  • Cosmology of Theories beyond the SM
  • Models of Quantum Gravity