The Higgs and leptophobic force at the LHC

Abstract

The Higgs boson could provide the key to discover new physics at the Large Hadron Collider. We investigate novel decays of the Standard Model (SM) Higgs boson into leptophobic gauge bosons which can be light in agreement with all experimental constraints. We study the associated production of the SM Higgs and the leptophobic gauge boson that could be crucial to test the existence of a leptophobic force. Our results demonstrate that it is possible to have a simple gauge extension of the SM at the low scale, without assuming very small couplings and in agreement with all the experimental bounds that can be probed at the LHC.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].

  2. [2]

    CMS collaboration, Observation of a New Boson at a Mass of 125 GeV with the CMS Experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].

  3. [3]

    Particle Data Group, Review of Particle Physics, Phys. Rev. D 98 (2018) 030001 [INSPIRE].

  4. [4]

    M. Cepeda et al., Report from Working Group 2: Higgs Physics at the HL-LHC and HE-LHC, in Report on the Physics at the HL-LHC, and Perspectives for the HE-LHC, CERN Yellow Reports: Monographs 7, A. Dainese, M. Mangano, A.B. Meyer, A. Nisati, G. Salam and M.A. Vesterinen eds., CERN (2019), pp. 221–584 [arXiv:1902.00134] [INSPIRE].

  5. [5]

    A. Pais, Remark on baryon conservation, Phys. Rev. D 8 (1973) 1844 [INSPIRE].

    ADS  Article  Google Scholar 

  6. [6]

    R. Foot, G.C. Joshi and H. Lew, Gauged Baryon and Lepton Numbers, Phys. Rev. D 40 (1989) 2487 [INSPIRE].

    ADS  Article  Google Scholar 

  7. [7]

    C.D. Carone and H. Murayama, Realistic models with a light U(1) gauge boson coupled to baryon number, Phys. Rev. D 52 (1995) 484 [hep-ph/9501220] [INSPIRE].

  8. [8]

    P. Fileviez Pérez and M.B. Wise, Baryon and lepton number as local gauge symmetries, Phys. Rev. D 82 (2010) 011901 [Erratum ibid. 82 (2010) 079901] [arXiv:1002.1754] [INSPIRE].

  9. [9]

    P. Fileviez Pérez and M.B. Wise, Breaking Local Baryon and Lepton Number at the TeV Scale, JHEP 08 (2011) 068 [arXiv:1106.0343] [INSPIRE].

    Article  Google Scholar 

  10. [10]

    M. Duerr, P. Fileviez Pérez and M.B. Wise, Gauge Theory for Baryon and Lepton Numbers with Leptoquarks, Phys. Rev. Lett. 110 (2013) 231801 [arXiv:1304.0576] [INSPIRE].

  11. [11]

    P. Fileviez Pérez, S. Ohmer and H.H. Patel, Minimal Theory for Lepto-Baryons, Phys. Lett. B 735 (2014) 283 [arXiv:1403.8029] [INSPIRE].

    ADS  Article  Google Scholar 

  12. [12]

    P. Fileviez Pérez, New Paradigm for Baryon and Lepton Number Violation, Phys. Rept. 597 (2015) 1 [arXiv:1501.01886] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  13. [13]

    M. Duerr and P. Fileviez Pérez, Theory for Baryon Number and Dark Matter at the LHC, Phys. Rev. D 91 (2015) 095001 [arXiv:1409.8165] [INSPIRE].

    ADS  Article  Google Scholar 

  14. [14]

    S. Ohmer and H.H. Patel, Leptobaryons as Majorana Dark Matter, Phys. Rev. D 92 (2015) 055020 [arXiv:1506.00954] [INSPIRE].

    ADS  Article  Google Scholar 

  15. [15]

    M. Duerr, P. Fileviez Pérez and J. Smirnov, Baryonic Higgs at the LHC, JHEP 09 (2017) 093 [arXiv:1704.03811] [INSPIRE].

    ADS  Article  Google Scholar 

  16. [16]

    P. Fileviez Pérez, E. Golias, R.-H. Li and C. Murgui, Leptophobic Dark Matter and the Baryon Number Violation Scale, Phys. Rev. D 99 (2019) 035009 [arXiv:1810.06646] [INSPIRE].

    ADS  Article  Google Scholar 

  17. [17]

    P. Fileviez Pérez, E. Golias, R.-H. Li, C. Murgui and A.D. Plascencia, Anomaly-free dark matter models, Phys. Rev. D 100 (2019) 015017 [arXiv:1904.01017] [INSPIRE].

    ADS  Article  Google Scholar 

  18. [18]

    M. Carena, M. Quirós and Y. Zhang, Dark CP-violation and gauged lepton or baryon number for electroweak baryogenesis, Phys. Rev. D 101 (2020) 055014 [arXiv:1908.04818] [INSPIRE].

    ADS  Article  Google Scholar 

  19. [19]

    CMS collaboration, Search for Low-Mass Quark-Antiquark Resonances Produced in Association with a Photon at \( \sqrt{s} \) = 13 TeV, Phys. Rev. Lett. 123 (2019) 231803 [arXiv:1905.10331] [INSPIRE].

  20. [20]

    CMS collaboration, Search for narrow resonances in dijet final states at \( \sqrt{s} \) = 8 TeV with the novel CMS technique of data scouting, Phys. Rev. Lett. 117 (2016) 031802 [arXiv:1604.08907] [INSPIRE].

  21. [21]

    CMS collaboration, Search for narrow resonances in the b-tagged dijet mass spectrum in proton-proton collisions \( \sqrt{s} \) = 8 TeV, Phys. Rev. Lett. 120 (2018) 201801 [arXiv:1802.06149] [INSPIRE].

  22. [22]

    CMS collaboration, Search for low mass vector resonances decaying into quark-antiquark pairs in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, Phys. Rev. D 100 (2019) 112007 [arXiv:1909.04114] [INSPIRE].

  23. [23]

    CMS collaboration, Search for narrow and broad dijet resonances in proton-proton collisions at \( \sqrt{s} \) = 13 TeV and constraints on dark matter mediators and other new particles, JHEP 08 (2018) 130 [arXiv:1806.00843] [INSPIRE].

  24. [24]

    CMS collaboration, Search for dijet resonances using events with three jets in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, Phys. Lett. B 805 (2020) 135448 [arXiv:1911.03761] [INSPIRE].

  25. [25]

    ATLAS collaboration, Search for low-mass dijet resonances using trigger-level jets with the ATLAS detector in pp collisions at \( \sqrt{s} \) = 13 TeV, Phys. Rev. Lett. 121 (2018) 081801 [arXiv:1804.03496] [INSPIRE].

  26. [26]

    A. Alloul, N.D. Christensen, C. Degrande, C. Duhr and B. Fuks, FeynRules 2.0 — A complete toolbox for tree-level phenomenology, Comput. Phys. Commun. 185 (2014) 2250 [arXiv:1310.1921] [INSPIRE].

  27. [27]

    J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].

    ADS  Article  Google Scholar 

  28. [28]

    A.D. Martin, W.J. Stirling, R.S. Thorne and G. Watt, Parton distributions for the LHC, Eur. Phys. J. C 63 (2009) 189 [arXiv:0901.0002] [INSPIRE].

    ADS  Article  Google Scholar 

  29. [29]

    A. Ilnicka, T. Robens and T. Stefaniak, Constraining Extended Scalar Sectors at the LHC and beyond, Mod. Phys. Lett. A 33 (2018) 1830007 [arXiv:1803.03594] [INSPIRE].

    ADS  Article  Google Scholar 

  30. [30]

    ATLAS and CMS collaborations, Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC pp collision data at \( \sqrt{s} \) = 7 and 8 TeV, JHEP 08 (2016) 045 [arXiv:1606.02266] [INSPIRE].

  31. [31]

    LHC Higgs Cross Section Working Group, Handbook of LHC Higgs Cross Sections: 4. Deciphering the Nature of the Higgs Sector, arXiv:1610.07922 [INSPIRE].

  32. [32]

    G. Apollinari et al., High-Luminosity Large Hadron Collider (HL-LHC), in CERN Yellow Reports: Monographs 4, CERN (2017) [CERN-2017-007-M] [INSPIRE].

  33. [33]

    ATLAS collaboration, Observation of H → \( b\overline{b} \) decays and V H production with the ATLAS detector, Phys. Lett. B 786 (2018) 59 [arXiv:1808.08238] [INSPIRE].

  34. [34]

    CMS collaboration, Evidence for the Higgs boson decay to a bottom quark-antiquark pair, Phys. Lett. B 780 (2018) 501 [arXiv:1709.07497] [INSPIRE].

  35. [35]

    J.M. Butterworth, A.R. Davison, M. Rubin and G.P. Salam, Jet substructure as a new Higgs search channel at the LHC, AIP Conf. Proc. 1078 (2009) 189 [arXiv:0809.2530] [INSPIRE].

    ADS  Google Scholar 

  36. [36]

    K.S. Babu, C.F. Kolda and J. March-Russell, Implications of generalized Z – Z′ mixing, Phys. Rev. D 57 (1998) 6788 [hep-ph/9710441] [INSPIRE].

  37. [37]

    A. Hook, E. Izaguirre and J.G. Wacker, Model Independent Bounds on Kinetic Mixing, Adv. High Energy Phys. 2011 (2011) 859762 [arXiv:1006.0973] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  38. [38]

    CMS collaboration, Search for a narrow resonance decaying to a pair of muons in proton-proton collisions at 13 TeV, CMS-PAS-EXO-19-018 (2019) [INSPIRE].

  39. [39]

    LHCb collaboration, Search for Dark Photons Produced in 13 TeV pp Collisions, Phys. Rev. Lett. 120 (2018) 061801 [arXiv:1710.02867] [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

Author information

Affiliations

Authors

Corresponding author

Correspondence to Alexis D. Plascencia.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2003.09426

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pérez, P.F., Golias, E., Murgui, C. et al. The Higgs and leptophobic force at the LHC. J. High Energ. Phys. 2020, 87 (2020). https://doi.org/10.1007/JHEP07(2020)087

Download citation

Keywords

  • Beyond Standard Model
  • Higgs Physics