The Hopf algebra structure of the R-operation

Abstract

We give a Hopf-algebraic formulation of the R-operation, which is a canonical way to render UV and IR divergent Euclidean Feynman diagrams finite. Our analysis uncovers a close connection to Brown’s Hopf algebra of motic graphs. Using this connection we are able to provide a verbose proof of the long observed ‘commutativity’ of UV and IR subtractions. We also give a new duality between UV and IR counterterms, which, entirely algebraic in nature, is formulated as an inverse relation on the group of characters of the Hopf algebra of log-divergent scaleless Feynman graphs. Many explicit examples of calculations with applications to infrared rearrangement are given.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    D. Kreimer, On the Hopf algebra structure of perturbative quantum field theories, Adv. Theor. Math. Phys. 2 (1998) 303 [q-alg/9707029] [INSPIRE].

  2. [2]

    A. Connes and D. Kreimer, Renormalization in quantum field theory and the Riemann-Hilbert problem. 1. The Hopf algebra structure of graphs and the main theorem, Commun. Math. Phys. 210 (2000) 249 [hep-th/9912092] [INSPIRE].

  3. [3]

    N.N. Bogoliubov and O.S. Parasiuk, On the multiplication of the causal function in the quantum theory of fields, Acta Math. 97 (1957) 227 [INSPIRE].

  4. [4]

    K. Hepp, Proof of the Bogolyubov-Parasiuk theorem on renormalization, Commun. Math. Phys. 2 (1966) 301 [INSPIRE].

  5. [5]

    W. Zimmermann, Convergence of Bogolyubov’s method of renormalization in momentum space, Commun. Math. Phys. 15 (1969) 208 [INSPIRE].

  6. [6]

    A.B. Goncharov, Multiple polylogarithms and mixed Tate motives, math.AG/0103059.

  7. [7]

    F.C.S. Brown, On the decomposition of motivic multiple zeta values, in Galois-Teichmüller Theory and Arithmetic Geometry , Advanced Studies in Pure Mathematics, volume 63, Mathematical Society of Japan, Tokyo Japan (2012), p. 31 [arXiv:1102.1310] [INSPIRE].

  8. [8]

    C. Duhr, Hopf algebras, coproducts and symbols: an application to Higgs boson amplitudes, JHEP 08 (2012) 043 [arXiv:1203.0454] [INSPIRE].

  9. [9]

    S. Bloch, H. Esnault and D. Kreimer, On Motives associated to graph polynomials, Commun. Math. Phys. 267 (2006) 181 [math/0510011] [INSPIRE].

  10. [10]

    F.C.S. Brown, On the periods of some Feynman integrals, arXiv:0910.0114 [INSPIRE].

  11. [11]

    P. Belkale and P. Brosnan, Matroids motives, and a conjecture of Kontsevich, Duke Math. J. 116 (2003) 147.

  12. [12]

    F.C.S. Brown and O. Schnetz, A K 3 in 𝜙4 , Duke Math. J. 161 (2012) 1817 [arXiv:1006.4064] [INSPIRE].

  13. [13]

    F.C.S. Brown, The Massless higher-loop two-point function, Commun. Math. Phys. 287 (2009) 925 [arXiv:0804.1660] [INSPIRE].

  14. [14]

    E. Panzer, Algorithms for the symbolic integration of hyperlogarithms with applications to Feynman integrals, Comput. Phys. Commun. 188 (2015) 148 [arXiv:1403.3385] [INSPIRE].

  15. [15]

    F.C.S. Brown, Feynman amplitudes, coaction principle and cosmic Galois group, Commun. Num. Theor. Phys. 11 (2017) 453 [arXiv:1512.06409] [INSPIRE].

  16. [16]

    O. Schnetz, Numbers and Functions in Quantum Field Theory, Phys. Rev. D 97 (2018) 085018 [arXiv:1606.08598] [INSPIRE].

  17. [17]

    F.C.S. Brown, Mixed tate motives over ℤ, Ann. Math. 175 (2012) 949.

  18. [18]

    S. Abreu, R. Britto, C. Duhr and E. Gardi, Algebraic Structure of Cut Feynman Integrals and the Diagrammatic Coaction, Phys. Rev. Lett. 119 (2017) 051601 [arXiv:1703.05064] [INSPIRE].

  19. [19]

    S. Abreu, R. Britto, C. Duhr and E. Gardi, Diagrammatic Hopf algebra of cut Feynman integrals: the one-loop case, JHEP 12 (2017) 090 [arXiv:1704.07931] [INSPIRE].

  20. [20]

    S. Abreu, R. Britto, C. Duhr, E. Gardi and J. Matthew, Diagrammatic Coaction of Two-Loop Feynman Integrals, in proceedings of the 14th International Symposium on Radiative Corrections: Application of Quantum Field Theory to Phenomenology (RADCOR 2019), Avignon, France, 8–13 September 2019, arXiv:1912.06561 [INSPIRE].

  21. [21]

    K.G. Chetyrkin and F.V. Tkachov, Infrared R operation and ultraviolet counterterms in the MS scheme, Phys. Lett. B 114 (1982) 340 [INSPIRE].

  22. [22]

    K.G. Chetyrkin and V.A. Smirnov, R -Operation corrected, Phys. Lett. B 144 (1984) 419 [INSPIRE].

  23. [23]

    V.A. Smirnov and K.G. Chetyrkin, R Operation in the Minimal Subtraction Scheme, Theor. Math. Phys. 63 (1985) 462 [INSPIRE].

  24. [24]

    H. Kleinert and V. Schulte-Frohlinde, Critical Properties of 𝜙4 -Theories, World Scientific (2001).

  25. [25]

    S. Larin and P. van Nieuwenhuizen, The Infrared R operation, hep-th/0212315 [INSPIRE].

  26. [26]

    K.G. Chetyrkin, Combinatorics of R-, R1 - and R -operations and asymptotic expansions of Feynman integrals in the limit of large momenta and masses, arXiv:1701.08627 [INSPIRE].

  27. [27]

    A.A. Vladimirov, Method for Computing Renormalization Group Functions in Dimensional Renormalization Scheme, Theor. Math. Phys. 43 (1980) 417 [INSPIRE].

  28. [28]

    K.G. Chetyrkin, A.L. Kataev and F.V. Tkachov, Five Loop Calculations in the g𝜙4 Model and the Critical Index η, Phys. Lett. B 99 (1981) 147 [Erratum ibid. B 101 (1981) 457] [INSPIRE].

  29. [29]

    H. Kleinert, J. Neu, V. Schulte-Frohlinde, K.G. Chetyrkin and S.A. Larin, Five-loop renormalization group functions of O(n)-symmetric 𝜙4 -theory and E-expansions of critical exponents up to ∈5 , Phys. Lett. B 272 (1991) 39 [Erratum ibid. B 319 (1993) 545] [hep-th/9503230] [INSPIRE].

  30. [30]

    M. Kompaniets and E. Panzer, Renormalization group functions of 𝜙4 theory in the MS-scheme to six loops, PoS LL2016 (2016) 038 [arXiv:1606.09210] [INSPIRE].

  31. [31]

    M.V. Kompaniets and E. Panzer, Minimally subtracted six loop renormalization of O(n)-symmetric 𝜙4 theory and critical exponents, Phys. Rev. D 96 (2017) 036016 [arXiv:1705.06483] [INSPIRE].

  32. [32]

    D.V. Batkovich, K.G. Chetyrkin and M.V. Kompaniets, Six loop analytical calculation of the field anomalous dimension and the critical exponent η in O(n)-symmetric φ4 model, Nucl. Phys. B 906 (2016) 147 [arXiv:1601.01960] [INSPIRE].

  33. [33]

    F. Herzog, B. Ruijl, T. Ueda, J.A.M. Vermaseren and A. Vogt, The five-loop beta function of Yang-Mills theory with fermions, JHEP 02 (2017) 090 [arXiv:1701.01404] [INSPIRE].

  34. [34]

    F. Herzog, S. Moch, B. Ruijl, T. Ueda, J.A.M. Vermaseren and A. Vogt, Five-loop contributions to low-N non-singlet anomalous dimensions in QCD, Phys. Lett. B 790 (2019) 436 [arXiv:1812.11818] [INSPIRE].

  35. [35]

    F. Herzog, B. Ruijl, T. Ueda, J.A.M. Vermaseren and A. Vogt, On Higgs decays to hadrons and the R-ratio at N 4LO, JHEP 08 (2017) 113 [arXiv:1707.01044] [INSPIRE].

  36. [36]

    F. Herzog and B. Ruijl, The R -operation for Feynman graphs with generic numerators, JHEP 05 (2017) 037 [arXiv:1703.03776] [INSPIRE].

  37. [37]

    P.A. Baikov, K.G. Chetyrkin, J.H. Kühn and J. Rittinger, Complete \( \mathcal{O}\left({\alpha}_s^4\right) \) QCD Corrections to Hadronic Z -Decays, Phys. Rev. Lett. 108 (2012) 222003 [arXiv:1201.5804] [INSPIRE].

  38. [38]

    P.A. Baikov, K.G. Chetyrkin and J.H. Kühn, Quark Mass and Field Anomalous Dimensions to \( \mathcal{O}\left({\alpha}_s^5\right) \), JHEP 10 (2014) 076 [arXiv:1402.6611] [INSPIRE].

  39. [39]

    P.A. Baikov, K.G. Chetyrkin and J.H. Kühn, Scalar correlator at \( O\left({\alpha}_s^4\right) \), Higgs decay into b-quarks and bounds on the light quark masses, Phys. Rev. Lett. 96 (2006) 012003 [hep-ph/0511063] [INSPIRE].

  40. [40]

    P.A. Baikov, K.G. Chetyrkin and J.H. Kühn, Five-Loop Running of the QCD coupling constant, Phys. Rev. Lett. 118 (2017) 082002 [arXiv:1606.08659] [INSPIRE].

  41. [41]

    K.G. Chetyrkin, G. Falcioni, F. Herzog and J.A.M. Vermaseren, Five-loop renormalisation of QCD in covariant gauges, JHEP 10 (2017) 179 [arXiv:1709.08541] [INSPIRE].

  42. [42]

    E.R. Speer, Ultraviolet and infrared singularity structure of generic Feynman amplitudes, Ann. Inst. Henri Poincaŕe Phys. Theor. 23 (1975) 1 [INSPIRE].

  43. [43]

    K. Hepp, Proof of the Bogolyubov-Parasiuk theorem on renormalization, Commun. Math. Phys. 2 (1966) 301 [INSPIRE].

  44. [44]

    W. Zimmermann, The power counting theorem for Minkowski metric, Commun. Math. Phys. 11 (1968) 1 [INSPIRE].

  45. [45]

    J.C. Collins, Renormalization: An Introduction to Renormalization, the Renormalization Group and the Operator-Product Expansion, Cambridge University Press, Cambridge U.K. (1985).

  46. [46]

    W.E. Caswell and A.D. Kennedy, A simple approach to renormalization theory, Phys. Rev. D 25 (1982) 392 [INSPIRE].

  47. [47]

    V.A. Smirnov, Absolutely convergent alpha representation of analytically and dimensionally regularized Feynman amplitudes, Theor. Math. Phys. 59 (1984) 563 [INSPIRE].

  48. [48]

    V.A. Smirnov, Asymptotic expansions in limits of large momenta and masses, Commun. Math. Phys. 134 (1990) 109 [INSPIRE].

  49. [49]

    J.C. Collins, Normal Products in Dimensional Regularization, Nucl. Phys. B 92 (1975) 477 [INSPIRE].

  50. [50]

    G. Leibbrandt, Introduction to the Technique of Dimensional Regularization, Rev. Mod. Phys. 47 (1975) 849 [INSPIRE].

  51. [51]

    K.G. Chetyrkin and V.A. Smirnov, Dimensional regularization and infrared divergences, Theor. Math. Phys. 56 (1984) 770 [INSPIRE].

  52. [52]

    K.G. Chetyrkin, A.L. Kataev and F.V. Tkachov, New Approach to Evaluation of Multiloop Feynman Integrals: The Gegenbauer Polynomial x-Space Technique, Nucl. Phys. B 174 (1980) 345 [INSPIRE].

  53. [53]

    D. Manchon, Hopf algebras, from basics to applications to renormalization, in proceedings of the 5th Mathematical Meeting of Glanon: Algebra, Geometry and Applications to Physics, Glanon, Burgundy, France, 2–6 July 2001, math.QA/0408405 [INSPIRE].

  54. [54]

    M. Borinsky, Graphs in perturbation theory: algebraic structure and asymptotics, Springer (2018).

  55. [55]

    M. Sweedler, Hopf algebras, Mathematics Lecture Note Series, W.A. Benjamin, Inc. (1969).

  56. [56]

    M. Borinsky, Algebraic lattices in QFT renormalization, Lett. Math. Phys. 106 (2016) 879 [arXiv:1509.01862] [INSPIRE].

  57. [57]

    B. Ruijl, T. Ueda and J. Vermaseren, FORM version 4.2, arXiv:1707.06453 [INSPIRE].

  58. [58]

    T. Ueda, B. Ruijl and J.A.M. Vermaseren, Forcer: a FORM program for 4-loop massless propagators, PoS LL2016 (2016) 070 [arXiv:1607.07318] [INSPIRE].

  59. [59]

    J. Kock, Perturbative Renormalisation for Not-Quite-Connected Bialgebras, Lett. Math. Phys. 105 (2015) 1413 [arXiv:1411.3098] [INSPIRE].

  60. [60]

    D. Kreimer, Anatomy of a gauge theory, Annals Phys. 321 (2006) 2757 [hep-th/0509135] [INSPIRE].

  61. [61]

    D. Kreimer and K. Yeats, An Etude in non-linear Dyson-Schwinger Equations, Nucl. Phys. Proc. Suppl. 160 (2006) 116 [hep-th/0605096] [INSPIRE].

  62. [62]

    W.D. van Suijlekom, Renormalization of gauge fields: A Hopf algebra approach, Commun. Math. Phys. 276 (2007) 773 [hep-th/0610137] [INSPIRE].

  63. [63]

    M. Borinsky, Feynman graph generation and calculations in the Hopf algebra of Feynman graphs, Comput. Phys. Commun. 185 (2014) 3317 [arXiv:1402.2613] [INSPIRE].

  64. [64]

    B. Humpert and W.L. van Neerven, Diagrammatic mass factorization, Phys. Rev. D 25 (1982) 2593 [INSPIRE].

  65. [65]

    J.C. Collins and D.E. Soper, Back-To-Back Jets in QCD, Nucl. Phys. B 193 (1981) 381 [Erratum ibid. B 213 (1983) 545] [INSPIRE].

  66. [66]

    J.C. Collins, Foundations of perturbative QCD, Camb. Monogr. Part. Phys. Nucl. Phys. Cosmol. 32 (2011) 1 [INSPIRE].

  67. [67]

    O. Erdoğan and G. Sterman, Ultraviolet divergences and factorization for coordinate-space amplitudes, Phys. Rev. D 91 (2015) 065033 [arXiv:1411.4588] [INSPIRE].

  68. [68]

    F. Caola, K. Melnikov and R. R¨ontsch, Nested soft-collinear subtractions in NNLO QCD computations, Eur. Phys. J. C 77 (2017) 248 [arXiv:1702.01352] [INSPIRE].

  69. [69]

    L. Magnea, E. Maina, G. Pelliccioli, C. Signorile-Signorile, P. Torrielli and S. Uccirati, Factorisation and Subtraction beyond NLO, JHEP 12 (2018) 062 [arXiv:1809.05444] [INSPIRE].

  70. [70]

    F. Herzog, Geometric IR subtraction for final state real radiation, JHEP 08 (2018) 006 [arXiv:1804.07949] [INSPIRE].

  71. [71]

    Y. Ma, A Forest Formula to Subtract Infrared Singularities in Amplitudes for Wide-angle Scattering, JHEP 05 (2020) 012 [arXiv:1910.11304] [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

Author information

Affiliations

Authors

Corresponding author

Correspondence to Michael Borinsky.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2003.04301

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Beekveldt, R., Borinsky, M. & Herzog, F. The Hopf algebra structure of the R-operation. J. High Energ. Phys. 2020, 61 (2020). https://doi.org/10.1007/JHEP07(2020)061

Download citation

Keywords

  • Renormalization Regularization and Renormalons
  • Scattering Amplitudes
  • Quantum Groups
  • Differential and Algebraic Geometry