Advertisement

Erratum to: Magnetic quivers, Higgs branches and 6d \( \mathcal{N} \) = (1, 0) theories

  • Santiago Cabrera
  • Amihay Hanany
  • Marcus SperlingEmail author
Erratum
  • 26 Downloads

Keywords

Brane Dynamics in Gauge Theories D-branes Extended Supersymmetry Supersymmetric Gauge Theory 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    E. Witten, Some comments on string dynamics, in Future perspectives in string theory. Proceedings, Conference, Strings ′95, Los Angeles, CA, U.S.A., 13–18 March 1995, pg. 501 [hep-th/9507121] [INSPIRE].
  2. [2]
    A. Strominger, Open p-branes, Phys. Lett. B 383 (1996) 44 [hep-th/9512059] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  3. [3]
    A. Sagnotti, A note on the Green-Schwarz mechanism in open string theories, Phys. Lett. B 294 (1992) 196 [hep-th/9210127] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    U.H. Danielsson, G. Ferretti, J. Kalkkinen and P. Stjernberg, Notes on supersymmetric gauge theories in five-dimensions and six-dimensions, Phys. Lett. B 405 (1997) 265 [hep-th/9703098] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    M. Bershadsky and C. Vafa, Global anomalies and geometric engineering of critical theories in six-dimensions, hep-th/9703167 [INSPIRE].
  6. [6]
    A. Hanany and A. Zaffaroni, Branes and six-dimensional supersymmetric theories, Nucl. Phys. B 529 (1998) 180 [hep-th/9712145] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  7. [7]
    I. Brunner and A. Karch, Branes and six-dimensional fixed points, Phys. Lett. B 409 (1997) 109 [hep-th/9705022] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  8. [8]
    A. Hanany and A. Zaffaroni, Chiral symmetry from type IIA branes, Nucl. Phys. B 509 (1998) 145 [hep-th/9706047] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  9. [9]
    J.J. Heckman, D.R. Morrison and C. Vafa, On the classification of 6D SCFTs and generalized ADE orbifolds, JHEP 05 (2014) 028 [Erratum ibid. 06 (2015) 017] [arXiv:1312.5746] [INSPIRE].
  10. [10]
    J.J. Heckman, D.R. Morrison, T. Rudelius and C. Vafa, Atomic classification of 6D SCFTs, Fortsch. Phys. 63 (2015) 468 [arXiv:1502.05405] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    M. Del Zotto, J.J. Heckman, A. Tomasiello and C. Vafa, 6d conformal matter, JHEP 02 (2015) 054 [arXiv:1407.6359] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  12. [12]
    M.B. Green, J.H. Schwarz and P.C. West, Anomaly free chiral theories in six-dimensions, Nucl. Phys. B 254 (1985) 327 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  13. [13]
    S. Randjbar-Daemi, A. Salam, E. Sezgin and J.A. Strathdee, An anomaly free model in six-dimensions, Phys. Lett. B 151 (1985) 351 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  14. [14]
    A. Dabholkar and J. Park, An orientifold of type IIB theory on K3, Nucl. Phys. B 472 (1996) 207 [hep-th/9602030] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  15. [15]
    N.J. Hitchin, A. Karlhede, U. Lindström and M. Roček, Hyper-Kähler metrics and supersymmetry, Commun. Math. Phys. 108 (1987) 535 [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    M. Del Zotto and A. Hanany, Complete graphs, Hilbert series and the Higgs branch of the 4d N = 2 (A n , A m) SCFTs, Nucl. Phys. B 894 (2015) 439 [arXiv:1403.6523] [INSPIRE].
  17. [17]
    S. Cremonesi, G. Ferlito, A. Hanany and N. Mekareeya, Instanton operators and the Higgs branch at infinite coupling, JHEP 04 (2017) 042 [arXiv:1505.06302] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  18. [18]
    G. Ferlito, A. Hanany, N. Mekareeya and G. Zafrir, 3d Coulomb branch and 5d Higgs branch at infinite coupling, JHEP 07 (2018) 061 [arXiv:1712.06604] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  19. [19]
    S. Cabrera, A. Hanany and F. Yagi, Tropical geometry and five dimensional Higgs branches at infinite coupling, JHEP 01 (2019) 068 [arXiv:1810.01379] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  20. [20]
    N. Mekareeya, K. Ohmori, Y. Tachikawa and G. Zafrir, E 8 instantons on type-A ALE spaces and supersymmetric field theories, JHEP 09 (2017) 144 [arXiv:1707.04370] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    A. Hanany and N. Mekareeya, The small E 8 instanton and the Kraft Procesi transition, JHEP 07 (2018) 098 [arXiv:1801.01129] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    A. Hanany and G. Zafrir, Discrete gauging in six dimensions, JHEP 07 (2018) 168 [arXiv:1804.08857] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  23. [23]
    N. Mekareeya, K. Ohmori, H. Shimizu and A. Tomasiello, Small instanton transitions for M5 fractions, JHEP 10 (2017) 055 [arXiv:1707.05785] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  24. [24]
    O.J. Ganor and A. Hanany, Small E 8 instantons and tensionless noncritical strings, Nucl. Phys. B 474 (1996) 122 [hep-th/9602120] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    N. Seiberg and E. Witten, Comments on string dynamics in six-dimensions, Nucl. Phys. B 471 (1996) 121 [hep-th/9603003] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  26. [26]
    K.A. Intriligator, RG fixed points in six-dimensions via branes at orbifold singularities, Nucl. Phys. B 496 (1997) 177 [hep-th/9702038] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  27. [27]
    J.D. Blum and K.A. Intriligator, New phases of string theory and 6D RG fixed points via branes at orbifold singularities, Nucl. Phys. B 506 (1997) 199 [hep-th/9705044] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  28. [28]
    G. Zafrir, Brane webs, 5d gauge theories and 6d N = (1, 0) SCFTs, JHEP 12 (2015) 157 [arXiv:1509.02016] [INSPIRE].ADSzbMATHGoogle Scholar
  29. [29]
    K. Ohmori and H. Shimizu, S 1 /T 2 compactifications of 6d N = (1, 0) theories and brane webs, JHEP 03 (2016) 024 [arXiv:1509.03195] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    H. Hayashi, S.-S. Kim, K. Lee and F. Yagi, 6d SCFTs, 5d dualities and tao web diagrams, JHEP 05 (2019) 203 [arXiv:1509.03300] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    A. Hanany and E. Witten, Type IIB superstrings, BPS monopoles and three-dimensional gauge dynamics, Nucl. Phys. B 492 (1997) 152 [hep-th/9611230] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  32. [32]
    S. Cremonesi, A. Hanany and A. Zaffaroni, Monopole operators and Hilbert series of Coulomb branches of 3d N = 4 gauge theories, JHEP 01 (2014) 005 [arXiv:1309.2657] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    S. Cabrera and A. Hanany, Branes and the Kraft-Procesi transition, JHEP 11 (2016) 175 [arXiv:1609.07798] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    S. Cabrera and A. Hanany, Branes and the Kraft-Procesi transition: classical case, JHEP 04 (2018) 127 [arXiv:1711.02378] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  35. [35]
    S. Cabrera and A. Hanany, Quiver subtractions, JHEP 09 (2018) 008 [arXiv:1803.11205] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  36. [36]
    A. Hanany and M. Sperling, Discrete quotients of 3-dimensional N = 4 Coulomb branches via the cycle index, JHEP 08 (2018) 157 [arXiv:1807.02784] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  37. [37]
    A. Hanany and A. Zajac, Discrete gauging in Coulomb branches of three dimensional N = 4 supersymmetric gauge theories, JHEP 08 (2018) 158 [arXiv:1807.03221] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  38. [38]
    A. Kapustin and M.J. Strassler, On mirror symmetry in three-dimensional Abelian gauge theories, JHEP 04 (1999) 021 [hep-th/9902033] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  39. [39]
    A. Beauville, Symplectic singularities, Invent. Math. 139 (2000) 541 [math.AG/9903070].
  40. [40]
    A. Dancer, F. Kirwan and A. Swann, Implosion for hyper-Kähler manifolds, arXiv:1209.1578 [INSPIRE].
  41. [41]
    N. Seiberg and E. Witten, Monopoles, duality and chiral symmetry breaking in N = 2 supersymmetric QCD, Nucl. Phys. B 431 (1994) 484 [hep-th/9408099] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  42. [42]
    G. Ferlito and A. Hanany, A tale of two cones: the Higgs branch of Sp(n) theories with 2n flavours, arXiv:1609.06724 [INSPIRE].
  43. [43]
    V. Kac, Infinite-dimensional Lie algebras, Progr. Math., Cambridge University Press, Cambridge, U.K. (1994).Google Scholar
  44. [44]
    D.R. Morrison and N. Seiberg, Extremal transitions and five-dimensional supersymmetric field theories, Nucl. Phys. B 483 (1997) 229 [hep-th/9609070] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  45. [45]
    M.R. Douglas, S.H. Katz and C. Vafa, Small instantons, del Pezzo surfaces and type-Itheory, Nucl. Phys. B 497 (1997) 155 [hep-th/9609071] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  46. [46]
    E. Gorbatov, V.S. Kaplunovsky, J. Sonnenschein, S. Theisen and S. Yankielowicz, On heterotic orbifolds, M-theory and type-Ibrane engineering, JHEP 05 (2002) 015 [hep-th/0108135] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  47. [47]
    R. Bott, The stable homotopy of the classical groups, Ann. Math. 70 (1959) 313.MathSciNetCrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Theoretical Physics GroupImperial College LondonLondonU.K.
  2. 2.Yau Mathematical Sciences CenterTsinghua UniversityBeijingChina

Personalised recommendations