Advertisement

Top-Yukawa contributions to bbH production at the LHC

  • Nicolas DeutschmannEmail author
  • Fabio Maltoni
  • Marius Wiesemann
  • Marco Zaro
Open Access
Regular Article - Theoretical Physics
  • 20 Downloads

Abstract

We study the production of a Higgs boson in association with bottom quarks \( \left(b\overline{b}H\right) \) in hadronic collisions at the LHC, including the different contributions stemming from terms proportional to the top-quark Yukawa coupling (y t 2 ), to the bottom-quark one (y b 2 ), and to their interference (ybyt). Our results are accurate to next-to-leading order in QCD, employ the four-flavour scheme and the (Born-improved) heavy-top quark approximation. We find that next-to-leading order corrections to the y t 2 component are sizable, making it the dominant production mechanism for associated \( b\overline{b}H \) production in the Standard Model and increasing its inclusive rate by almost a factor of two. By studying final-state distributions of the various contributions, we identify observables and selection cuts that can be used to select the various components and to improve the experimental sensitivity of \( b\overline{b}H \) production on the bottom-quark Yukawa coupling.

Keywords

NLO Computations 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].
  2. [2]
    CMS collaboration, Observation of a New Boson at a Mass of 125 GeV with the CMS Experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].
  3. [3]
    F. Englert and R. Brout, Broken Symmetry and the Mass of Gauge Vector Mesons, Phys. Rev. Lett. 13 (1964) 321 [INSPIRE].
  4. [4]
    P.W. Higgs, Broken Symmetries and the Masses of Gauge Bosons, Phys. Rev. Lett. 13 (1964) 508 [INSPIRE].
  5. [5]
    S. Weinberg, A Model of Leptons, Phys. Rev. Lett. 19 (1967) 1264 [INSPIRE].
  6. [6]
    ATLAS collaboration, Measurements of the Higgs boson production and decay rates and coupling strengths using pp collision data at \( \sqrt{s}=7 \) and 8 TeV in the ATLAS experiment, Eur. Phys. J. C 76 (2016) 6 [arXiv:1507.04548] [INSPIRE].
  7. [7]
    ATLAS and CMS collaborations, Combined Measurement of the Higgs Boson Mass in pp Collisions at \( \sqrt{s}=7 \) and 8 TeV with the ATLAS and CMS Experiments, Phys. Rev. Lett. 114 (2015) 191803 [arXiv:1503.07589] [INSPIRE].
  8. [8]
    ATLAS and CMS collaborations, Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC pp collision data at \( \sqrt{s}=7 \) and 8 TeV, JHEP 08 (2016) 045 [arXiv:1606.02266] [INSPIRE].
  9. [9]
    ATLAS collaboration, Combined measurements of Higgs boson production and decay using up to 80 fb −1 of proton-proton collision data at \( \sqrt{s}=13 \) TeV collected with the ATLAS experiment, ATLAS-CONF-2019-005.
  10. [10]
    CMS collaboration, Combined measurement and interpretation of differential Higgs boson production cross sections at \( \sqrt{s}=13 \) TeV, CMS-PAS-HIG-17-028.
  11. [11]
    CMS collaboration, Observation of \( t\overline{t}H \) production, Phys. Rev. Lett. 120 (2018) 231801 [arXiv:1804.02610] [INSPIRE].
  12. [12]
    ATLAS collaboration, Observation of Higgs boson production in association with a top quark pair at the LHC with the ATLAS detector, Phys. Lett. B 784 (2018) 173 [arXiv:1806.00425] [INSPIRE].
  13. [13]
    ATLAS collaboration, Evidence for the Higgs-boson Yukawa coupling to tau leptons with the ATLAS detector, JHEP 04 (2015) 117 [arXiv:1501.04943] [INSPIRE].
  14. [14]
    CMS collaboration, Observation of the Higgs boson decay to a pair of τ leptons with the CMS detector, Phys. Lett. B 779 (2018) 283 [arXiv:1708.00373] [INSPIRE].
  15. [15]
    ATLAS collaboration, Observation of \( H\to b\overline{b} \) decays and V H production with the ATLAS detector, ATLAS-CONF-2018-036.
  16. [16]
    CMS collaboration, Search for the standard model Higgs boson produced through vector boson fusion and decaying to \( b\overline{b} \), Phys. Rev. D 92 (2015) 032008 [arXiv:1506.01010] [INSPIRE].
  17. [17]
    ATLAS collaboration, Search for the Standard Model Higgs boson produced by vector-boson fusion and decaying to bottom quarks in \( \sqrt{s}=8 \) TeV pp collisions with the ATLAS detector, JHEP 11 (2016) 112 [arXiv:1606.02181] [INSPIRE].
  18. [18]
    CMS collaboration, Search for the standard model Higgs boson produced in association with a W or a Z boson and decaying to bottom quarks, Phys. Rev. D 89 (2014) 012003 [arXiv:1310.3687] [INSPIRE].
  19. [19]
    H. Mantler and M. Wiesemann, Top- and bottom-mass effects in hadronic Higgs production at small transverse momenta through LO+NLL, Eur. Phys. J. C 73 (2013) 2467 [arXiv:1210.8263] [INSPIRE].
  20. [20]
    M. Grazzini and H. Sargsyan, Heavy-quark mass effects in Higgs boson production at the LHC, JHEP 09 (2013) 129 [arXiv:1306.4581] [INSPIRE].
  21. [21]
    A. Banfi, P.F. Monni and G. Zanderighi, Quark masses in Higgs production with a jet veto, JHEP 01 (2014) 097 [arXiv:1308.4634] [INSPIRE].
  22. [22]
    E. Bagnaschi, G. Degrassi, P. Slavich and A. Vicini, Higgs production via gluon fusion in the POWHEG approach in the SM and in the MSSM, JHEP 02 (2012) 088 [arXiv:1111.2854] [INSPIRE].
  23. [23]
    R. Frederix, S. Frixione, E. Vryonidou and M. Wiesemann, Heavy-quark mass effects in Higgs plus jets production, JHEP 08 (2016) 006 [arXiv:1604.03017] [INSPIRE].
  24. [24]
    E. Bagnaschi, R.V. Harlander, H. Mantler, A. Vicini and M. Wiesemann, Resummation ambiguities in the Higgs transverse-momentum spectrum in the Standard Model and beyond, JHEP 01 (2016) 090 [arXiv:1510.08850] [INSPIRE].
  25. [25]
    H. Mantler and M. Wiesemann, Hadronic Higgs production through NLO + PS in the SM, the 2HDM and the MSSM, Eur. Phys. J. C 75 (2015) 257 [arXiv:1504.06625] [INSPIRE].
  26. [26]
    R.V. Harlander, H. Mantler and M. Wiesemann, Transverse momentum resummation for Higgs production via gluon fusion in the MSSM, JHEP 11 (2014) 116 [arXiv:1409.0531] [INSPIRE].
  27. [27]
    R. Raitio and W.W. Wada, Higgs Boson Production at Large Transverse Momentum in QCD, Phys. Rev. D 19 (1979) 941 [INSPIRE].
  28. [28]
    D.L. Rainwater, M. Spira and D. Zeppenfeld, Higgs boson production at hadron colliders: Signal and background processes, in Physics at TeV colliders. Proceedings, Euro Summer School, Les Houches, France, May 21-June 1, 2001 (2002) [hep-ph/0203187] [INSPIRE].
  29. [29]
    S. Dittmaier, M. Krämer and M. Spira, Higgs radiation off bottom quarks at the Tevatron and the CERN LHC, Phys. Rev. D 70 (2004) 074010 [hep-ph/0309204] [INSPIRE].
  30. [30]
    M. Wiesemann, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni and P. Torrielli, Higgs production in association with bottom quarks, JHEP 02 (2015) 132 [arXiv:1409.5301] [INSPIRE].
  31. [31]
    S. Dawson, C.B. Jackson, L. Reina and D. Wackeroth, Exclusive Higgs boson production with bottom quarks at hadron colliders, Phys. Rev. D 69 (2004) 074027 [hep-ph/0311067] [INSPIRE].
  32. [32]
    S. Dawson, C.B. Jackson, L. Reina and D. Wackeroth, Higgs production in association with bottom quarks at hadron colliders, Mod. Phys. Lett. A 21 (2006) 89 [hep-ph/0508293] [INSPIRE].
  33. [33]
    N. Liu, L. Wu, P. Wu and J.M. Yang, Complete one-loop effects of SUSY QCD in bbh production at the LHC under current experimental constraints, JHEP 01 (2013) 161 [arXiv:1208.3413] [INSPIRE].
  34. [34]
    S. Dittmaier, P. Häfliger, M. Krämer, M. Spira and M. Walser, Neutral MSSM Higgs-boson production with heavy quarks: NLO supersymmetric QCD corrections, Phys. Rev. D 90 (2014) 035010 [arXiv:1406.5307] [INSPIRE].
  35. [35]
    Y. Zhang, NLO electroweak effects on the Higgs boson production in association with a bottom quark pair at the LHC, Phys. Rev. D 96 (2017) 113009 [arXiv:1708.08790] [INSPIRE].
  36. [36]
    D. Dicus, T. Stelzer, Z. Sullivan and S. Willenbrock, Higgs boson production in association with bottom quarks at next-to-leading order, Phys. Rev. D 59 (1999) 094016 [hep-ph/9811492] [INSPIRE].
  37. [37]
    C. Balázs, H.-J. He and C.P. Yuan, QCD corrections to scalar production via heavy quark fusion at hadron colliders, Phys. Rev. D 60 (1999) 114001 [hep-ph/9812263] [INSPIRE].
  38. [38]
    R.V. Harlander and W.B. Kilgore, Higgs boson production in bottom quark fusion at next-to-next-to leading order, Phys. Rev. D 68 (2003) 013001 [hep-ph/0304035] [INSPIRE].
  39. [39]
    J.M. Campbell, R.K. Ellis, F. Maltoni and S. Willenbrock, Higgs-Boson production in association with a single bottom quark, Phys. Rev. D 67 (2003) 095002 [hep-ph/0204093] [INSPIRE].
  40. [40]
    R.V. Harlander, K.J. Ozeren and M. Wiesemann, Higgs plus jet production in bottom quark annihilation at next-to-leading order, Phys. Lett. B 693 (2010) 269 [arXiv:1007.5411] [INSPIRE].
  41. [41]
    R. Harlander and M. Wiesemann, Jet-veto in bottom-quark induced Higgs production at next-to-next-to-leading order, JHEP 04 (2012) 066 [arXiv:1111.2182] [INSPIRE].
  42. [42]
    S. Bühler, F. Herzog, A. Lazopoulos and R. Müller, The fully differential hadronic production of a Higgs boson via bottom quark fusion at NNLO, JHEP 07 (2012) 115 [arXiv:1204.4415] [INSPIRE].
  43. [43]
    K.J. Ozeren, Analytic Results for Higgs Production in Bottom Fusion, JHEP 11 (2010) 084 [arXiv:1010.2977] [INSPIRE].
  44. [44]
    A. Belyaev, P.M. Nadolsky and C.P. Yuan, Transverse momentum resummation for Higgs boson produced via bb fusion at hadron colliders, JHEP 04 (2006) 004 [hep-ph/0509100] [INSPIRE].
  45. [45]
    R.V. Harlander, A. Tripathi and M. Wiesemann, Higgs production in bottom quark annihilation: Transverse momentum distribution at NNLO+NNLL, Phys. Rev. D 90 (2014) 015017 [arXiv:1403.7196] [INSPIRE].
  46. [46]
    T. Ahmed, M. Mahakhud, P. Mathews, N. Rana and V. Ravindran, Two-loop QCD corrections to \( Higgs\to b+\overline{b}+g \) amplitude, JHEP 08 (2014) 075 [arXiv:1405.2324] [INSPIRE].
  47. [47]
    T. Gehrmann and D. Kara, The \( Hb\overline{b} \) form factor to three loops in QCD, JHEP 09 (2014) 174 [arXiv:1407.8114] [INSPIRE].
  48. [48]
    B. Jager, L. Reina and D. Wackeroth, Higgs boson production in association with b jets in the POWHEG BOX, Phys. Rev. D 93 (2016) 014030 [arXiv:1509.05843] [INSPIRE].
  49. [49]
    F. Krauss, D. Napoletano and S. Schumann, Simulating b-associated production of Z and Higgs bosons with the SHERPA event generator, Phys. Rev. D 95 (2017) 036012 [arXiv:1612.04640] [INSPIRE].
  50. [50]
    F. Maltoni, G. Ridolfi and M. Ubiali, b-initiated processes at the LHC: a reappraisal, JHEP 07 (2012) 022 [Erratum ibid. 04 (2013) 095] [arXiv:1203.6393] [INSPIRE].
  51. [51]
    M. Lim, F. Maltoni, G. Ridolfi and M. Ubiali, Anatomy of double heavy-quark initiated processes, JHEP 09 (2016) 132 [arXiv:1605.09411] [INSPIRE].
  52. [52]
    S. Forte, D. Napoletano and M. Ubiali, Higgs production in bottom-quark fusion in a matched scheme, Phys. Lett. B 751 (2015) 331 [arXiv:1508.01529] [INSPIRE].
  53. [53]
    S. Forte, D. Napoletano and M. Ubiali, Higgs production in bottom-quark fusion: matching beyond leading order, Phys. Lett. B 763 (2016) 190 [arXiv:1607.00389] [INSPIRE].
  54. [54]
    M. Bonvini, A.S. Papanastasiou and F.J. Tackmann, Resummation and matching of b-quark mass effects in \( b\overline{b}H \) production, JHEP 11 (2015) 196 [arXiv:1508.03288] [INSPIRE].
  55. [55]
    M. Bonvini, A.S. Papanastasiou and F.J. Tackmann, Matched predictions for the \( b\overline{b}H \) cross section at the 13 TeV LHC, JHEP 10 (2016) 053 [arXiv:1605.01733] [INSPIRE].
  56. [56]
    C. Anastasiou and K. Melnikov, Higgs boson production at hadron colliders in NNLO QCD, Nucl. Phys. B 646 (2002) 220 [hep-ph/0207004] [INSPIRE].
  57. [57]
    C. Anastasiou, C. Duhr, F. Dulat, F. Herzog and B. Mistlberger, Higgs Boson Gluon-Fusion Production in QCD at Three Loops, Phys. Rev. Lett. 114 (2015) 212001 [arXiv:1503.06056] [INSPIRE].
  58. [58]
    M. Gerlach, F. Herren and M. Steinhauser, Wilson coefficients for Higgs boson production and decoupling relations to \( \mathcal{O}\left({\alpha}_s^4\right) \), JHEP 11 (2018) 141 [arXiv:1809.06787] [INSPIRE].
  59. [59]
    B. Mistlberger, Higgs boson production at hadron colliders at N 3 LO in QCD, JHEP 05 (2018) 028 [arXiv:1802.00833] [INSPIRE].
  60. [60]
    C. Anastasiou et al., High precision determination of the gluon fusion Higgs boson cross-section at the LHC, JHEP 05 (2016) 058 [arXiv:1602.00695] [INSPIRE].
  61. [61]
    R.V. Harlander, T. Neumann, K.J. Ozeren and M. Wiesemann, Top-mass effects in differential Higgs production through gluon fusion at order α s4, JHEP 08 (2012) 139 [arXiv:1206.0157] [INSPIRE].
  62. [62]
    T. Neumann and M. Wiesemann, Finite top-mass effects in gluon-induced Higgs production with a jet-veto at NNLO, JHEP 11 (2014) 150 [arXiv:1408.6836] [INSPIRE].
  63. [63]
    P. Artoisenet et al., A framework for Higgs characterisation, JHEP 11 (2013) 043 [arXiv:1306.6464] [INSPIRE].
  64. [64]
    F. Demartin, F. Maltoni, K. Mawatari, B. Page and M. Zaro, Higgs characterisation at NLO in QCD: CP properties of the top-quark Yukawa interaction, Eur. Phys. J. C 74 (2014) 3065 [arXiv:1407.5089] [INSPIRE].
  65. [65]
    J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].
  66. [66]
    K.G. Chetyrkin, B.A. Kniehl and M. Steinhauser, Virtual top quark effects on the \( H\to b\overline{b} \) decay at next-to-leading order in QCD, Phys. Rev. Lett. 78 (1997) 594 [hep-ph/9610456] [INSPIRE].
  67. [67]
    K.G. Chetyrkin, B.A. Kniehl and M. Steinhauser, Three loop \( \mathcal{O}\left({\alpha}_s^2{G}_F{M}_t^2\right) \) corrections to hadronic Higgs decays, Nucl. Phys. B 490 (1997) 19 [hep-ph/9701277] [INSPIRE].
  68. [68]
    K.G. Chetyrkin, B.A. Kniehl and M. Steinhauser, Decoupling relations to \( \mathcal{O}\left({\alpha}_s^3\right) \) and their connection to low-energy theorems, Nucl. Phys. B 510 (1998) 61 [hep-ph/9708255] [INSPIRE].
  69. [69]
    R. Frederix, S. Frixione, V. Hirschi, D. Pagani, H.S. Shao and M. Zaro, The automation of next-to-leading order electroweak calculations, JHEP 07 (2018) 185 [arXiv:1804.10017] [INSPIRE].
  70. [70]
    C. Degrande, R. Frederix, V. Hirschi, M. Ubiali, M. Wiesemann and M. Zaro, Accurate predictions for charged Higgs production: Closing the m H± ∼ m t window, Phys. Lett. B 772 (2017) 87 [arXiv:1607.05291] [INSPIRE].
  71. [71]
    S. Dittmaier, M. Krämer, A. Muck and T. Schluter, MSSM Higgs-boson production in bottom-quark fusion: Electroweak radiative corrections, JHEP 03 (2007) 114 [hep-ph/0611353] [INSPIRE].
  72. [72]
    S. Dawson, C.B. Jackson and P. Jaiswal, SUSY QCD Corrections to Higgs-b Production: Is the Δb Approximation Accurate?, Phys. Rev. D 83 (2011) 115007 [arXiv:1104.1631] [INSPIRE].
  73. [73]
    NNPDF collaboration, Parton distributions from high-precision collider data, Eur. Phys. J. C 77 (2017) 663 [arXiv:1706.00428] [INSPIRE].
  74. [74]
    A. Buckley et al., LHAPDF6: parton density access in the LHC precision era, Eur. Phys. J. C 75 (2015) 132 [arXiv:1412.7420] [INSPIRE].
  75. [75]
    R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, R. Pittau and P. Torrielli, Four-lepton production at hadron colliders: aMC@NLO predictions with theoretical uncertainties, JHEP 02 (2012) 099 [arXiv:1110.4738] [INSPIRE].
  76. [76]
    P. Marquard, A.V. Smirnov, V.A. Smirnov and M. Steinhauser, Quark Mass Relations to Four-Loop Order in Perturbative QCD, Phys. Rev. Lett. 114 (2015) 142002 [arXiv:1502.01030] [INSPIRE].
  77. [77]
    A.L. Kataev and V.S. Molokoedov, On the flavour dependence of the \( \mathcal{O}\left({\alpha}_s^4\right) \) correction to the relation between running and pole heavy quark masses, Eur. Phys. J. Plus 131 (2016) 271 [arXiv:1511.06898] [INSPIRE].
  78. [78]
    LHC Higgs Cross Section Working Group collaboration, Handbook of LHC Higgs Cross Sections: 4. Deciphering the Nature of the Higgs Sector, arXiv:1610.07922 [INSPIRE].
  79. [79]
    M. Cacciari, G.P. Salam and G. Soyez, The anti-k t jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE].
  80. [80]
    M. Cacciari, G.P. Salam and G. Soyez, FastJet User Manual, Eur. Phys. J. C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].
  81. [81]
    F. Bishara, U. Haisch, P.F. Monni and E. Re, Constraining Light-Quark Yukawa Couplings from Higgs Distributions, Phys. Rev. Lett. 118 (2017) 121801 [arXiv:1606.09253] [INSPIRE].
  82. [82]
    F. Cascioli, P. Maierhöfer, N. Moretti, S. Pozzorini and F. Siegert, NLO matching for \( t\overline{t}b\overline{b} \) production with massive b-quarks, Phys. Lett. B 734 (2014) 210 [arXiv:1309.5912] [INSPIRE].
  83. [83]
    T. Ježo, J.M. Lindert, N. Moretti and S. Pozzorini, New NLOPS predictions for \( t\overline{t}+b \) -jet production at the LHC, Eur. Phys. J. C 78 (2018) 502 [arXiv:1802.00426] [INSPIRE].
  84. [84]
    E. Bagnaschi, F. Maltoni, A. Vicini and M. Zaro, Lepton-pair production in association with a \( b\overline{b} \) pair and the determination of the W boson mass, JHEP 07 (2018) 101 [arXiv:1803.04336] [INSPIRE].
  85. [85]
    LHC Higgs Cross Section Working Group collaboration, LHC HXSWG interim recommendations to explore the coupling structure of a Higgs-like particle, arXiv:1209.0040 [INSPIRE].
  86. [86]
    L. Buonocore, P. Nason and F. Tramontano, Heavy quark radiation in NLO+PS POWHEG generators, Eur. Phys. J. C 78 (2018) 151 [arXiv:1711.06281] [INSPIRE].
  87. [87]
    T. Inami, T. Kubota and Y. Okada, Effective Gauge Theory and the Effect of Heavy Quarks in Higgs Boson Decays, Z. Phys. C 18 (1983) 69 [INSPIRE].
  88. [88]
    S. Dawson, Radiative corrections to Higgs boson production, Nucl. Phys. B 359 (1991) 283 [INSPIRE].
  89. [89]
    V. Hirschi, R. Frederix, S. Frixione, M.V. Garzelli, F. Maltoni and R. Pittau, Automation of one-loop QCD corrections, JHEP 05 (2011) 044 [arXiv:1103.0621] [INSPIRE].
  90. [90]
    A.B. Goncharov, Multiple polylogarithms, cyclotomy and modular complexes, Math. Res. Lett. 5 (1998) 497 [arXiv:1105.2076] [INSPIRE].
  91. [91]
    A.B. Goncharov, Multiple polylogarithms and mixed Tate motives, math/0103059.
  92. [92]
    J. Kuipers, T. Ueda, J.A.M. Vermaseren and J. Vollinga, FORM version 4.0, Comput. Phys. Commun. 184 (2013) 1453 [arXiv:1203.6543] [INSPIRE].
  93. [93]
    P. Nogueira, Automatic Feynman graph generation, J. Comput. Phys. 105 (1993) 279 [INSPIRE].
  94. [94]
    R.N. Lee, LiteRed 1.4: a powerful tool for reduction of multiloop integrals, J. Phys. Conf. Ser. 523 (2014) 012059 [arXiv:1310.1145] [INSPIRE].
  95. [95]
    B. Jantzen, A.V. Smirnov and V.A. Smirnov, Expansion by regions: revealing potential and Glauber regions automatically, Eur. Phys. J. C 72 (2012) 2139 [arXiv:1206.0546] [INSPIRE].
  96. [96]
    V.A. Smirnov, Applied asymptotic expansions in momenta and masses, Springer Tracts Mod. Phys. 177 (2002) 1 [INSPIRE].
  97. [97]
    C. Anastasiou, C. Duhr, F. Dulat and B. Mistlberger, Soft triple-real radiation for Higgs production at N3LO, JHEP 07 (2013) 003 [arXiv:1302.4379] [INSPIRE].
  98. [98]
    C. Duhr and F. Dulat, Polylogtools, private code (2014).Google Scholar
  99. [99]
    C.W. Bauer, A. Frink and R. Kreckel, Introduction to the GiNaC framework for symbolic computation within the C++ programming language, J. Symb. Comput. 33 (2000) 1 [cs/0004015] [INSPIRE].
  100. [100]
    A.V. Smirnov, FIESTA4: Optimized Feynman integral calculations with GPU support, Comput. Phys. Commun. 204 (2016) 189 [arXiv:1511.03614] [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Institute for Theoretical Physics, ETH ZurichZurichSwitzerland
  2. 2.Centre for Cosmology, Particle Physics and Phenomenology (CP3)Université catholique de LouvainLouvain-la-NeuveBelgium
  3. 3.Theoretical Physics DepartmentCERNGenevaSwitzerland
  4. 4.NikhefAmsterdamThe Netherlands

Personalised recommendations