Advertisement

Fiducial cross sections for the four-lepton decay mode in Higgs-plus-jet production up to NNLO QCD

  • X. ChenEmail author
  • T. Gehrmann
  • E. W. N. Glover
  • A. Huss
Open Access
Regular Article - Theoretical Physics
  • 23 Downloads

Abstract

The four-lepton decay mode of the Higgs boson allows for a clean kinematic reconstruction, thereby enabling precision studies of the Higgs boson properties and of its production dynamics. We compute the NNLO QCD corrections to fiducial cross sections relevant to this decay mode in the gluon-fusion channel producing a Higgs boson in association with a hadronic jet, and study the impact of the QCD corrections on the fiducial acceptance factors in inclusive Higgs and Higgs-plus-jet production. We investigate in detail the different definitions used in the ATLAS and CMS measurements to define the fiducial cross sections. Differences in the lepton isolation prescription are found to have a sizeable impact on the higher order corrections to the fiducial acceptance factors.

Keywords

Higgs Physics Perturbative QCD 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].
  2. [2]
    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].
  3. [3]
    LHC Higgs Cross Section Working Group collaboration, Handbook of LHC Higgs Cross Sections: 4. Deciphering the nature of the Higgs sector, arXiv:1610.07922 [INSPIRE].
  4. [4]
    H.M. Georgi, S.L. Glashow, M.E. Machacek and D.V. Nanopoulos, Higgs bosons from two gluon annihilation in proton proton collisions, Phys. Rev. Lett. 40 (1978) 692 [INSPIRE].ADSGoogle Scholar
  5. [5]
    M. Spira, A. Djouadi, D. Graudenz and P.M. Zerwas, Higgs boson production at the LHC, Nucl. Phys. B 453 (1995) 17 [hep-ph/9504378] [INSPIRE].
  6. [6]
    R. Harlander and P. Kant, Higgs production and decay: Analytic results at next-to-leading order QCD, JHEP 12 (2005) 015 [hep-ph/0509189] [INSPIRE].
  7. [7]
    U. Aglietti, R. Bonciani, G. Degrassi and A. Vicini, Analytic results for virtual QCD corrections to Higgs production and decay, JHEP 01 (2007) 021 [hep-ph/0611266] [INSPIRE].
  8. [8]
    C. Anastasiou, S. Bucherer and Z. Kunszt, HPro: a NLO Monte-Carlo for Higgs production via gluon fusion with finite heavy quark masses, JHEP 10 (2009) 068 [arXiv:0907.2362] [INSPIRE].ADSGoogle Scholar
  9. [9]
    S. Dawson, Radiative corrections to Higgs boson production, Nucl. Phys. B 359 (1991) 283 [INSPIRE].ADSGoogle Scholar
  10. [10]
    C. Anastasiou and K. Melnikov, Higgs boson production at hadron colliders in NNLO QCD, Nucl. Phys. B 646 (2002) 220 [hep-ph/0207004] [INSPIRE].
  11. [11]
    R.V. Harlander and W.B. Kilgore, Next-to-next-to-leading order Higgs production at hadron colliders, Phys. Rev. Lett. 88 (2002) 201801 [hep-ph/0201206] [INSPIRE].
  12. [12]
    V. Ravindran, J. Smith and W.L. van Neerven, NNLO corrections to the total cross-section for Higgs boson production in hadron hadron collisions, Nucl. Phys. B 665 (2003) 325 [hep-ph/0302135] [INSPIRE].
  13. [13]
    S. Catani and M. Grazzini, An NNLO subtraction formalism in hadron collisions and its application to Higgs boson production at the LHC, Phys. Rev. Lett. 98 (2007) 222002 [hep-ph/0703012] [INSPIRE].
  14. [14]
    M. Grazzini, NNLO predictions for the Higgs boson signal in the HWWlνlν and HZZ → 4l decay channels, JHEP 02 (2008) 043 [arXiv:0801.3232] [INSPIRE].ADSGoogle Scholar
  15. [15]
    M. Grazzini and H. Sargsyan, Heavy-quark mass effects in Higgs boson production at the LHC, JHEP 09 (2013) 129 [arXiv:1306.4581] [INSPIRE].ADSGoogle Scholar
  16. [16]
    C. Anastasiou et al., Higgs boson gluon-fusion production in QCD at three loops, Phys. Rev. Lett. 114 (2015) 212001 [arXiv:1503.06056] [INSPIRE].ADSGoogle Scholar
  17. [17]
    B. Mistlberger, Higgs boson production at hadron colliders at N 3 LO in QCD, JHEP 05 (2018) 028 [arXiv:1802.00833] [INSPIRE].ADSGoogle Scholar
  18. [18]
    L. Cieri et al., Higgs boson production at the LHC using the q T subtraction formalism at N 3 LO QCD, JHEP 02 (2019) 096 [arXiv:1807.11501] [INSPIRE].ADSGoogle Scholar
  19. [19]
    F. Dulat, B. Mistlberger and A. Pelloni, Precision predictions at N 3 LO for the Higgs boson rapidity distribution at the LHC, Phys. Rev. D 99 (2019) 034004 [arXiv:1810.09462] [INSPIRE].ADSGoogle Scholar
  20. [20]
    R. Boughezal et al., Higgs boson production in association with a jet at next-to-next-to-leading order, Phys. Rev. Lett. 115 (2015) 082003 [arXiv:1504.07922] [INSPIRE].ADSGoogle Scholar
  21. [21]
    X. Chen et al., NNLO QCD corrections to Higgs boson production at large transverse momentum, JHEP 10 (2016) 066 [arXiv:1607.08817] [INSPIRE].ADSGoogle Scholar
  22. [22]
    R. Boughezal et al., Higgs boson production in association with a jet at NNLO using jettiness subtraction, Phys. Lett. B 748 (2015) 5 [arXiv:1505.03893] [INSPIRE].ADSGoogle Scholar
  23. [23]
    F. Caola, K. Melnikov and M. Schulze, Fiducial cross sections for Higgs boson production in association with a jet at next-to-next-to-leading order in QCD, Phys. Rev. D 92 (2015) 074032 [arXiv:1508.02684] [INSPIRE].ADSGoogle Scholar
  24. [24]
    J.M. Lindert, K. Kudashkin, K. Melnikov and C. Wever, Higgs bosons with large transverse momentum at the LHC, Phys. Lett. B 782 (2018) 210 [arXiv:1801.08226] [INSPIRE].ADSGoogle Scholar
  25. [25]
    S.P. Jones, M. Kerner and G. Luisoni, Next-to-leading-order QCD corrections to Higgs boson plus jet production with full top-quark mass dependence, Phys. Rev. Lett. 120 (2018) 162001 [arXiv:1802.00349] [INSPIRE].ADSGoogle Scholar
  26. [26]
    ATLAS collaboration, Fiducial and differential cross sections of Higgs boson production measured in the four-lepton decay channel in pp collisions at \( \sqrt{s} \) = 8 TeV with the ATLAS detector, Phys. Lett. B 738 (2014) 234 [arXiv:1408.3226] [INSPIRE].
  27. [27]
    CMS collaboration, Measurement of differential and integrated fiducial cross sections for Higgs boson production in the four-lepton decay channel in pp collisions at \( \sqrt{s} \) = 7 and 8 TeV, JHEP 04 (2016) 005 [arXiv:1512.08377] [INSPIRE].
  28. [28]
    ATLAS collaboration, Study of the spin and parity of the Higgs boson in diboson decays with the ATLAS detector, Eur. Phys. J. C 75 (2015) 476 [Erratum ibid. C 76 (2016) 152] [arXiv:1506.05669] [INSPIRE].
  29. [29]
    CMS collaboration, Constraints on the spin-parity and anomalous HVV couplings of the Higgs boson in proton collisions at 7 and 8 TeV, Phys. Rev. D 92 (2015) 012004 [arXiv:1411.3441] [INSPIRE].
  30. [30]
    ATLAS collaboration, Measurement of inclusive and differential cross sections in the HZZ * → 4ℓ decay channel in pp collisions at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, JHEP 10 (2017) 132 [arXiv:1708.02810] [INSPIRE].
  31. [31]
    ATLAS collaboration, Measurements of the Higgs boson production, fiducial and differential cross sections in the 4ℓ decay channel at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, ATLAS-CONF-2018-018 (2018).
  32. [32]
    CMS collaboration, Measurements of properties of the Higgs boson decaying into the four-lepton final state in pp collisions at \( \sqrt{s} \) = 13 TeV, JHEP 11 (2017) 047 [arXiv:1706.09936] [INSPIRE].
  33. [33]
    CMS Collaboration, Measurements of properties of the Higgs boson in the four-lepton final state in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, CMS-PAS-HIG-19-001 (2019).
  34. [34]
    F. Wilczek, Decays of heavy vector mesons into Higgs particles, Phys. Rev. Lett. 39 (1977) 1304 [INSPIRE].ADSGoogle Scholar
  35. [35]
    M.A. Shifman, A.I. Vainshtein and V.I. Zakharov, Remarks on Higgs boson interactions with nucleons, Phys. Lett. 78B (1978) 443 [INSPIRE].ADSGoogle Scholar
  36. [36]
    T. Inami, T. Kubota and Y. Okada, Effective gauge theory and the effect of heavy quarks in Higgs boson decays, Z. Phys. C 18 (1983) 69 [INSPIRE].ADSGoogle Scholar
  37. [37]
    K.G. Chetyrkin, B.A. Kniehl and M. Steinhauser, Decoupling relations to O(α S3) and their connection to low-energy theorems, Nucl. Phys. B 510 (1998) 61 [hep-ph/9708255] [INSPIRE].
  38. [38]
    M. Krämer, E. Laenen and M. Spira, Soft gluon radiation in Higgs boson production at the LHC, Nucl. Phys. B 511 (1998) 523 [hep-ph/9611272] [INSPIRE].
  39. [39]
    Y. Schröder and M. Steinhauser, Four-loop decoupling relations for the strong coupling, JHEP 01 (2006) 051 [hep-ph/0512058] [INSPIRE].
  40. [40]
    K.G. Chetyrkin, J.H. Kuhn and C. Sturm, QCD decoupling at four loops, Nucl. Phys. B 744 (2006) 121 [hep-ph/0512060] [INSPIRE].
  41. [41]
    B.A. Kniehl, A.V. Kotikov, A.I. Onishchenko and O.L. Veretin, Strong-coupling constant with flavor thresholds at five loops in the anti-MS scheme, Phys. Rev. Lett. 97 (2006) 042001 [hep-ph/0607202] [INSPIRE].
  42. [42]
    M. Spira, Effective multi-Higgs couplings to gluons, JHEP 10 (2016) 026 [arXiv:1607.05548] [INSPIRE].ADSGoogle Scholar
  43. [43]
    M. Gerlach, F. Herren and M. Steinhauser, Wilson coefficients for Higgs boson production and decoupling relations to \( \mathcal{O}\left({\alpha}_s^4\right) \), JHEP 11 (2018) 141 [arXiv:1809.06787] [INSPIRE].
  44. [44]
    R. Boughezal et al., Higgs boson production in association with a jet at next-to-next-to-leading order in perturbative QCD, JHEP 06 (2013) 072 [arXiv:1302.6216] [INSPIRE].ADSGoogle Scholar
  45. [45]
    X. Chen, T. Gehrmann, E.W.N. Glover and M. Jaquier, Precise QCD predictions for the production of Higgs + jet final states, Phys. Lett. B 740 (2015) 147 [arXiv:1408.5325] [INSPIRE].ADSGoogle Scholar
  46. [46]
    T. Gehrmann, M. Jaquier, E.W.N. Glover and A. Koukoutsakis, Two-loop QCD corrections to the helicity amplitudes for H → 3 partons, JHEP 02 (2012) 056 [arXiv:1112.3554] [INSPIRE].ADSzbMATHGoogle Scholar
  47. [47]
    L.J. Dixon and Y. Sofianatos, Analytic one-loop amplitudes for a Higgs boson plus four partons, JHEP 08 (2009) 058 [arXiv:0906.0008] [INSPIRE].ADSMathSciNetGoogle Scholar
  48. [48]
    S. Badger et al., One-loop Higgs plus four gluon amplitudes: full analytic results, JHEP 01 (2010) 036 [arXiv:0909.4475] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  49. [49]
    S. Badger, J.M. Campbell, R.K. Ellis and C. Williams, Analytic results for the one-loop NMHV Hqqgg amplitude, JHEP 12 (2009) 035 [arXiv:0910.4481] [INSPIRE].ADSGoogle Scholar
  50. [50]
    V. Del Duca, A. Frizzo and F. Maltoni, Higgs boson production in association with three jets, JHEP 05 (2004) 064 [hep-ph/0404013] [INSPIRE].
  51. [51]
    L.J. Dixon, E.W.N. Glover and V.V. Khoze, MHV rules for Higgs plus multi-gluon amplitudes, JHEP 12 (2004) 015 [hep-th/0411092] [INSPIRE].ADSMathSciNetGoogle Scholar
  52. [52]
    S.D. Badger, E.W.N. Glover and V.V. Khoze, MHV rules for Higgs plus multi-parton amplitudes, JHEP 03 (2005) 023 [hep-th/0412275] [INSPIRE].ADSMathSciNetGoogle Scholar
  53. [53]
    A. Gehrmann-De Ridder, T. Gehrmann and E.W.N. Glover, Antenna subtraction at NNLO, JHEP 09 (2005) 056 [hep-ph/0505111] [INSPIRE].
  54. [54]
    A. Gehrmann-De Ridder, T. Gehrmann and E.W.N. Glover, Gluon-gluon antenna functions from Higgs boson decay, Phys. Lett. B 612 (2005) 49 [hep-ph/0502110] [INSPIRE].
  55. [55]
    A. Gehrmann-De Ridder, T. Gehrmann and E.W.N. Glover, quark-gluon antenna functions from neutralino decay, Phys. Lett. B 612 (2005) 36 [hep-ph/0501291] [INSPIRE].
  56. [56]
    A. Daleo, T. Gehrmann and D. Maître, Antenna subtraction with hadronic initial states, JHEP 04 (2007) 016 [hep-ph/0612257] [INSPIRE].
  57. [57]
    A. Daleo, A. Gehrmann-De Ridder, T. Gehrmann and G. Luisoni, Antenna subtraction at NNLO with hadronic initial states: initial-final configurations, JHEP 01 (2010) 118 [arXiv:0912.0374] [INSPIRE].ADSzbMATHGoogle Scholar
  58. [58]
    T. Gehrmann and P.F. Monni, Antenna subtraction at NNLO with hadronic initial states: real-virtual initial-initial configurations, JHEP 12 (2011) 049 [arXiv:1107.4037] [INSPIRE].ADSzbMATHGoogle Scholar
  59. [59]
    R. Boughezal, A. Gehrmann-De Ridder and M. Ritzmann, Antenna subtraction at NNLO with hadronic initial states: double real radiation for initial-initial configurations with two quark flavours, JHEP 02 (2011) 098 [arXiv:1011.6631] [INSPIRE].ADSzbMATHGoogle Scholar
  60. [60]
    A. Gehrmann-De Ridder, T. Gehrmann and M. Ritzmann, Antenna subtraction at NNLO with hadronic initial states: double real initial-initial configurations, JHEP 10 (2012) 047 [arXiv:1207.5779] [INSPIRE].ADSzbMATHGoogle Scholar
  61. [61]
    J. Currie, E.W.N. Glover and S. Wells, Infrared structure at NNLO using antenna subtraction, JHEP 04 (2013) 066 [arXiv:1301.4693] [INSPIRE].ADSGoogle Scholar
  62. [62]
    J.F. Gunion, G.L. Kane and J. Wudka, Search techniques for charged and neutral intermediate mass Higgs bosons, Nucl. Phys. B 299 (1988) 231 [INSPIRE].ADSGoogle Scholar
  63. [63]
    T.G. Rizzo, Decays of heavy Higgs bosons, Phys. Rev. D 22 (1980) 722 [INSPIRE].ADSGoogle Scholar
  64. [64]
    J.M. Campbell, R.K. Ellis and C. Williams, Vector boson pair production at the LHC, JHEP 07 (2011) 018 [arXiv:1105.0020] [INSPIRE].ADSGoogle Scholar
  65. [65]
    J.M. Campbell and R.K. Ellis, An update on vector boson pair production at hadron colliders, Phys. Rev. D 60 (1999) 113006 [hep-ph/9905386] [INSPIRE].
  66. [66]
    NNPDF collaboration, Parton distributions for the LHC Run II, JHEP 04 (2015) 040 [arXiv:1410.8849] [INSPIRE].
  67. [67]
    ATLAS collaboration, Combined measurement of differential and total cross sections in the Hγγ and the HZZ * → 4ℓ decay channels at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, Phys. Lett. B 786 (2018) 114 [arXiv:1805.10197] [INSPIRE].
  68. [68]
    CMS collaboration, Combined measurement and interpretation of differential Higgs boson production cross sections at \( \sqrt{s} \) = 13 TeV, CMS-PAS-HIG-17-028 (2017).
  69. [69]
    R.K. Ellis et al., Higgs decay to τ + τ : a possible signature of intermediate mass Higgs bosons at the SSC, Nucl. Phys. B 297 (1988) 221 [INSPIRE].ADSGoogle Scholar
  70. [70]
    U. Baur and E.W.N. Glover, Higgs boson production at large transverse momentum in hadronic collisions, Nucl. Phys. B 339 (1990) 38 [INSPIRE].ADSGoogle Scholar
  71. [71]
    Z. Li, J. Wang, Q.-S. Yan and X. Zhao, Efficient numerical evaluation of Feynman integrals, Chin. Phys. C 40 (2016) 033103 [arXiv:1508.02512] [INSPIRE].ADSGoogle Scholar
  72. [72]
    S. Borowka et al., SecDec-3.0: numerical evaluation of multi-scale integrals beyond one loop, Comput. Phys. Commun. 196 (2015) 470 [arXiv:1502.06595] [INSPIRE].
  73. [73]
    S. Borowka et al., pySecDec: a toolbox for the numerical evaluation of multi-scale integrals, Comput. Phys. Commun. 222 (2018) 313 [arXiv:1703.09692] [INSPIRE].
  74. [74]
    K. Melnikov, L. Tancredi and C. Wever, Two-loop ggHg amplitude mediated by a nearly massless quark, JHEP 11 (2016) 104 [arXiv:1610.03747] [INSPIRE].ADSGoogle Scholar
  75. [75]
    K. Melnikov, L. Tancredi and C. Wever, Two-loop amplitudes for qgHq and \( q\overline{q}\to Hg \) mediated by a nearly massless quark, Phys. Rev. D 95 (2017) 054012 [arXiv:1702.00426] [INSPIRE].ADSGoogle Scholar
  76. [76]
    K. Kudashkin, K. Melnikov and C. Wever, Two-loop amplitudes for processes ggHg, qgHq and \( q\overline{q}\to Hg \) at large Higgs transverse momentum, JHEP 02 (2018) 135 [arXiv:1712.06549] [INSPIRE].
  77. [77]
    T. Neumann, NLO Higgs+jet production at large transverse momenta including top quark mass effects, J. Phys. Comm. 2 (2018) 095017 [arXiv:1802.02981] [INSPIRE].ADSGoogle Scholar
  78. [78]
    J.M. Lindert, K. Melnikov, L. Tancredi and C. Wever, Top-bottom interference effects in Higgs plus jet production at the LHC, Phys. Rev. Lett. 118 (2017) 252002 [arXiv:1703.03886] [INSPIRE].ADSGoogle Scholar
  79. [79]
    F. Caola et al., Bottom-quark effects in Higgs production at intermediate transverse momentum, JHEP 09 (2018) 035 [arXiv:1804.07632] [INSPIRE].ADSGoogle Scholar
  80. [80]
    M. Grazzini et al., Higgs boson pair production at NNLO with top quark mass effects, JHEP 05 (2018) 059 [arXiv:1803.02463] [INSPIRE].ADSGoogle Scholar
  81. [81]
    A. Banfi, P.F. Monni, G.P. Salam and G. Zanderighi, Higgs and Z-boson production with a jet veto, Phys. Rev. Lett. 109 (2012) 202001 [arXiv:1206.4998] [INSPIRE].ADSGoogle Scholar
  82. [82]
    T. Becher, M. Neubert and L. Rothen, Factorization and N 3 LL p +NNLO predictions for the Higgs cross section with a jet veto, JHEP 10 (2013) 125 [arXiv:1307.0025] [INSPIRE].ADSGoogle Scholar
  83. [83]
    I.W. Stewart, F.J. Tackmann, J.R. Walsh and S. Zuberi, Jet p T resummation in Higgs production at NNLL′ + NNLO, Phys. Rev. D 89 (2014) 054001 [arXiv:1307.1808] [INSPIRE].
  84. [84]
    A. Banfi et al., Jet-vetoed Higgs cross section in gluon fusion at N 3 LO+NNLL with small-R resummation, JHEP 04 (2016) 049 [arXiv:1511.02886] [INSPIRE].ADSGoogle Scholar
  85. [85]
    J.K.L. Michel, P. Pietrulewicz and F.J. Tackmann, Jet veto resummation with jet rapidity cuts, JHEP 04 (2019) 142 [arXiv:1810.12911] [INSPIRE].ADSGoogle Scholar
  86. [86]
    G. Bozzi, S. Catani, D. de Florian and M. Grazzini, Transverse-momentum resummation and the spectrum of the Higgs boson at the LHC, Nucl. Phys. B 737 (2006) 73 [hep-ph/0508068] [INSPIRE].
  87. [87]
    D. de Florian, G. Ferrera, M. Grazzini and D. Tommasini, Transverse-momentum resummation: Higgs boson production at the Tevatron and the LHC, JHEP 11 (2011) 064 [arXiv:1109.2109] [INSPIRE].Google Scholar
  88. [88]
    D. de Florian, G. Ferrera, M. Grazzini and D. Tommasini, Higgs boson production at the LHC: transverse momentum resummation effects in the H → 2γ, HWWlνlν and HZZ → 4l decay modes, JHEP 06 (2012) 132 [arXiv:1203.6321] [INSPIRE].
  89. [89]
    T. Becher, M. Neubert and D. Wilhelm, Higgs-boson production at small transverse momentum, JHEP 05 (2013) 110 [arXiv:1212.2621] [INSPIRE].ADSGoogle Scholar
  90. [90]
    D. Neill, I.Z. Rothstein and V. Vaidya, The Higgs transverse momentum distribution at NNLL and its theoretical errors, JHEP 12 (2015) 097 [arXiv:1503.00005] [INSPIRE].ADSGoogle Scholar
  91. [91]
    X. Chen et al., Precise QCD description of the Higgs boson transverse momentum spectrum, Phys. Lett. B 788 (2019) 425 [arXiv:1805.00736] [INSPIRE].ADSGoogle Scholar
  92. [92]
    W. Bizoń et al., Fiducial distributions in Higgs and Drell-Yan production at N 3 LL+NNLO, JHEP 12 (2018) 132 [arXiv:1805.05916] [INSPIRE].ADSGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of ZürichZürichSwitzerland
  2. 2.Institute for Particle Physics Phenomenology, Department of PhysicsUniversity of DurhamDurhamU.K.
  3. 3.Theoretical Physics DepartmentCERNGeneva 23Switzerland

Personalised recommendations