Advertisement

Covariant cosmological quantum space-time, higher-spin and gravity in the IKKT matrix model

  • Marcus Sperling
  • Harold C. SteinackerEmail author
Open Access
Regular Article - Theoretical Physics
  • 68 Downloads

Abstract

We discuss a (3+1)-dimensional covariant quantum space-time describing a FLRW cosmology with Big Bounce, obtained by a projection of the fuzzy hyperboloid H n 4 . This provides a background solution of the IKKT matrix model with mass term. We characterize the bosonic fluctuation spectrum, which consists of a tower of higher-spin modes, truncated at n. The modes are organized in terms of an underlying SO(4, 2) structure group, which is broken to the SO(3, 1) isometry of the background. The resulting higher-spin gauge theory includes all degrees of freedom required for gravity, and should be well suited for quantization. All modes propagate with the same speed of light, even though local boost invariance is not manifest. The propagating metric perturbation modes comprise those of a massless graviton, as well as a scalar mode. Gauge invariance allows to obtain the analog of the linearized Einstein-Hilbert action, which is expected to be induced upon quantization.

Keywords

M(atrix) Theories Models of Quantum Gravity Non-Commutative Geometry Higher Spin Gravity 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    H. Steinacker, Emergent Geometry and Gravity from Matrix Models: an Introduction, Class. Quant. Grav. 27 (2010) 133001 [arXiv:1003.4134] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    S. Minwalla, M. Van Raamsdonk and N. Seiberg, Noncommutative perturbative dynamics, JHEP 02 (2000) 020 [hep-th/9912072] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    N. Ishibashi, H. Kawai, Y. Kitazawa and A. Tsuchiya, A large N reduced model as superstring, Nucl. Phys. B 498 (1997) 467 [hep-th/9612115] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    I. Chepelev and A.A. Tseytlin, Interactions of type IIB D-branes from D instanton matrix model, Nucl. Phys. B 511 (1998) 629 [hep-th/9705120] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    D.N. Kabat and W. Taylor, Linearized supergravity from matrix theory, Phys. Lett. B 426 (1998) 297 [hep-th/9712185] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    H.C. Steinacker, String states, loops and effective actions in noncommutative field theory and matrix models, Nucl. Phys. B 910 (2016) 346 [arXiv:1606.00646] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    I. Chepelev, Y. Makeenko and K. Zarembo, Properties of D-branes in matrix model of IIB superstring, Phys. Lett. B 400 (1997) 43 [hep-th/9701151] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  8. [8]
    H. Aoki, S. Iso, H. Kawai, Y. Kitazawa and T. Tada, Space-time structures from IIB matrix model, Prog. Theor. Phys. 99 (1998) 713 [hep-th/9802085] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  9. [9]
    Y. Kimura, Noncommutative gauge theories on fuzzy sphere and fuzzy torus from matrix model, Prog. Theor. Phys. 106 (2001) 445 [hep-th/0103192] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    Y. Kimura, Noncommutative gauge theory on fuzzy four sphere and matrix model, Nucl. Phys. B 637 (2002) 177 [hep-th/0204256] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    H. Steinacker, Split noncommutativity and compactified brane solutions in matrix models, Prog. Theor. Phys. 126 (2011) 613 [arXiv:1106.6153] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  12. [12]
    S.-W. Kim, J. Nishimura and A. Tsuchiya, Late time behaviors of the expanding universe in the IIB matrix model, JHEP 10 (2012) 147 [arXiv:1208.0711] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    S.-W. Kim, J. Nishimura and A. Tsuchiya, Expanding (3+1)-dimensional universe from a Lorentzian matrix model for superstring theory in (9+1)-dimensions, Phys. Rev. Lett. 108 (2012) 011601 [arXiv:1108.1540] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    Y. Ito, J. Nishimura and A. Tsuchiya, Power-law expansion of the Universe from the bosonic Lorentzian type IIB matrix model, JHEP 11 (2015) 070 [arXiv:1506.04795] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    J. Nishimura and A. Tsuchiya, Complex Langevin analysis of the space-time structure in the Lorentzian type IIB matrix model, JHEP 06 (2019) 077 [arXiv:1904.05919] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  16. [16]
    D.N. Blaschke and H. Steinacker, Curvature and Gravity Actions for Matrix Models, Class. Quant. Grav. 27 (2010) 165010 [arXiv:1003.4132] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    H. Steinacker, Gravity and compactified branes in matrix models, JHEP 07 (2012) 156 [arXiv:1202.6306] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    H. Steinacker, The curvature of branes, currents and gravity in matrix models, JHEP 01 (2013) 112 [arXiv:1210.8364] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    H. Kawai, K. Kawana and K. Sakai, A note on graviton exchange in the emergent gravity scenario, PTEP 2017 (2017) 043B06 [arXiv:1610.09844] [INSPIRE].
  20. [20]
    V.O. Rivelles, Noncommutative field theories and gravity, Phys. Lett. B 558 (2003) 191 [hep-th/0212262] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    M. Hanada, H. Kawai and Y. Kimura, Describing curved spaces by matrices, Prog. Theor. Phys. 114 (2006) 1295 [hep-th/0508211] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    H.S. Yang, Emergent Gravity from Noncommutative Spacetime, Int. J. Mod. Phys. A 24 (2009) 4473 [hep-th/0611174] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  23. [23]
    H.S. Yang and M. Sivakumar, Emergent Gravity from Quantized Spacetime, Phys. Rev. D 82 (2010) 045004 [arXiv:0908.2809] [INSPIRE].ADSGoogle Scholar
  24. [24]
    A. Chaney, L. Lu and A. Stern, Matrix Model Approach to Cosmology, Phys. Rev. D 93 (2016) 064074 [arXiv:1511.06816] [INSPIRE].ADSMathSciNetGoogle Scholar
  25. [25]
    Y. Kaneko, H. Muraki and S. Watamura, Contravariant geometry and emergent gravity from noncommutative gauge theories, Class. Quant. Grav. 35 (2018) 055009 [arXiv:1711.01708] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  26. [26]
    A. Stern and C. Xu, Signature change in matrix model solutions, Phys. Rev. D 98 (2018) 086015 [arXiv:1808.07963] [INSPIRE].ADSMathSciNetGoogle Scholar
  27. [27]
    H.S. Snyder, Quantized space-time, Phys. Rev. 71 (1947) 38 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  28. [28]
    C.N. Yang, On quantized space-time, Phys. Rev. 72 (1947) 874 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  29. [29]
    H. Grosse, C. Klimčík and P. Prešnajder, On finite 4-D quantum field theory in noncommutative geometry, Commun. Math. Phys. 180 (1996) 429 [hep-th/9602115] [INSPIRE].
  30. [30]
    S. Ramgoolam, On spherical harmonics for fuzzy spheres in diverse dimensions, Nucl. Phys. B 610 (2001) 461 [hep-th/0105006] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  31. [31]
    J. Medina and D. O’Connor, Scalar field theory on fuzzy S 4, JHEP 11 (2003) 051 [hep-th/0212170] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    J.-P. Gazeau and F. Toppan, A natural fuzzyness of de Sitter space-time, Class. Quant. Grav. 27 (2010) 025004 [arXiv:0907.0021] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  33. [33]
    J. Heckman and H. Verlinde, Covariant non-commutative space-time, Nucl. Phys. B 894 (2015) 58 [arXiv:1401.1810] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  34. [34]
    M. Burić, D. Latas and L. Nenadovic, Fuzzy de Sitter Space, Eur. Phys. J. C 78 (2018) 953 [arXiv:1709.05158] [INSPIRE].ADSGoogle Scholar
  35. [35]
    M. Sperling and H.C. Steinacker, Covariant 4-dimensional fuzzy spheres, matrix models and higher spin, J. Phys. A 50 (2017) 375202 [arXiv:1704.02863] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  36. [36]
    H.C. Steinacker, Emergent gravity on covariant quantum spaces in the IKKT model, JHEP 12 (2016) 156 [arXiv:1606.00769] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  37. [37]
    P. de Medeiros and S. Ramgoolam, Non-associative gauge theory and higher spin interactions, JHEP 03 (2005) 072 [hep-th/0412027] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  38. [38]
    M.A. Vasiliev, Higher spin gauge theories in various dimensions, Fortsch. Phys. 52 (2004) 702 [hep-th/0401177] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  39. [39]
    H.C. Steinacker, Quantized open FRW cosmology from Yang-Mills matrix models, Phys. Lett. B 782 (2018) 176 [arXiv:1710.11495] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  40. [40]
    M. Sperling and H.C. Steinacker, The fuzzy 4-hyperboloid H n4 and higher-spin in Yang-Mills matrix models, Nucl. Phys. B 941 (2019) 680 [arXiv:1806.05907] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  41. [41]
    E. Sezgin and P. Sundell, On an exact cosmological solution of higher spin gauge theory, Bulg. J. Phys. 33 (2006) 506 [hep-th/0511296] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  42. [42]
    R. Aros, C. Iazeolla, J. Noreña, E. Sezgin, P. Sundell and Y. Yin, FRW and domain walls in higher spin gravity, JHEP 03 (2018) 153 [arXiv:1712.02401] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  43. [43]
    E. Joung and K. Mkrtchyan, Notes on higher-spin algebras: minimal representations and structure constants, JHEP 05 (2014) 103 [arXiv:1401.7977] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  44. [44]
    H.C. Steinacker, Cosmological space-times with resolved Big Bang in Yang-Mills matrix models, JHEP 02 (2018) 033 [arXiv:1709.10480] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  45. [45]
    D. Klammer and H. Steinacker, Fermions and noncommutative emergent gravity II: Curved branes in extra dimensions, JHEP 02 (2010) 074 [arXiv:0909.5298] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  46. [46]
    A.D. Sakharov, Vacuum quantum fluctuations in curved space and the theory of gravitation, Sov. Phys. Dokl. 12 (1968) 1040 [INSPIRE].ADSGoogle Scholar
  47. [47]
    N. Berline, E. Getzler and M. Vergne, Heat kernels and Dirac operators, Grundlehren Text Editions, Springer-Verlag, Berlin, Germany, (2004).Google Scholar
  48. [48]
    K. Hasebe, Non-Compact Hopf Maps and Fuzzy Ultra-Hyperboloids, Nucl. Phys. B 865 (2012) 148 [arXiv:1207.1968] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  49. [49]
    G. Mack, All unitary ray representations of the conformal group SU(2, 2) with positive energy, Commun. Math. Phys. 55 (1977) 1 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  50. [50]
    S. Fernando and M. Günaydin, Minimal unitary representation of SU(2, 2) and its deformations as massless conformal fields and their supersymmetric extensions, J. Math. Phys. 51 (2010) 082301 [arXiv:0908.3624] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  51. [51]
    G. Mack and I. Todorov, Irreducibility of the ladder representations of U(2, 2) when restricted to the Poincaré subgroup, J. Math. Phys. 10 (1969) 2078 [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  52. [52]
    W. Heidenreich, Tensor Products of Positive Energy Representations of SO(3, 2) and SO(4, 2), J. Math. Phys. 22 (1981) 1566 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  53. [53]
    A.M. Perelomov, Generalized coherent states and their applications, Springer, Berlin Heidelberg, Germany (1986).CrossRefzbMATHGoogle Scholar
  54. [54]
    H. Grosse and P. Prešnajder, The construction on noncommutative manifolds using coherent states, Lett. Math. Phys. 28 (1993) 239 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  55. [55]
    E. Hawkins, Quantization of equivariant vector bundles, Commun. Math. Phys. 202 (1999) 517 [q-alg/9708030] [INSPIRE].
  56. [56]
    G. Ishiki, Matrix Geometry and Coherent States, Phys. Rev. D 92 (2015) 046009 [arXiv:1503.01230] [INSPIRE].ADSMathSciNetGoogle Scholar
  57. [57]
    G. Ishiki, T. Matsumoto and H. Muraki, Information metric, Berry connection and Berezin-Toeplitz quantization for matrix geometry, Phys. Rev. D 98 (2018) 026002 [arXiv:1804.00900] [INSPIRE].ADSMathSciNetGoogle Scholar
  58. [58]
    J. Pawełczyk and H. Steinacker, A quantum algebraic description of D branes on group manifolds, Nucl. Phys. B 638 (2002) 433 [hep-th/0203110] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  59. [59]
    N. Seiberg and E. Witten, String theory and noncommutative geometry, JHEP 09 (1999) 032 [hep-th/9908142] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  60. [60]
    E.W. Kolb, A Coasting Cosmology, Astrophys. J. 344 (1989) 543 [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    M.V. John and K.B. Joseph, Generalized Chen-Wu type cosmological model, Phys. Rev. D 61 (2000) 087304 [gr-qc/9912069] [INSPIRE].
  62. [62]
    F. Melia and A. Shevchuk, The R h = ct Universe, Mon. Not. Roy. Astron. Soc. 419 (2012) 2579 [arXiv:1109.5189] [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    M.R. Douglas and N.A. Nekrasov, Noncommutative field theory, Rev. Mod. Phys. 73 (2001) 977 [hep-th/0106048] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  64. [64]
    R.J. Szabo, Quantum field theory on noncommutative spaces, Phys. Rept. 378 (2003) 207 [hep-th/0109162] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  65. [65]
    M. Sperling and H.C. Steinacker, Intersecting branes, Higgs sector and chirality from \( \mathcal{N} \) = 4 SYM with soft SUSY breaking, JHEP 04 (2018) 116 [arXiv:1803.07323] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  66. [66]
    H. Aoki, J. Nishimura and A. Tsuchiya, Realizing three generations of the Standard Model fermions in the type IIB matrix model, JHEP 05 (2014) 131 [arXiv:1401.7848] [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    D.N. Blaschke and H. Steinacker, On the 1-loop effective action for the IKKT model and non-commutative branes, JHEP 10 (2011) 120 [arXiv:1109.3097] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  68. [68]
    M. Visser, Sakharovs induced gravity: A modern perspective, Mod. Phys. Lett. A 17 (2002) 977 [gr-qc/0204062] [INSPIRE].
  69. [69]
    P. Gilkey, Invariance Theory: The Heat Equation and the Atiyah-Singer Index Theorem, CRC-Press, (1995).Google Scholar
  70. [70]
    H.C. Steinacker, One-loop stabilization of the fuzzy four-sphere via softly broken SUSY, JHEP 12 (2015) 115 [arXiv:1510.05779] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Yau Mathematical Sciences CenterTsinghua UniversityBeijingChina
  2. 2.Faculty of PhysicsUniversity of ViennaViennaAustria

Personalised recommendations