Advertisement

The non-perturbative phase diagram of the BMN matrix model

  • Yuhma Asano
  • Veselin G. Filev
  • Samuel Kováčik
  • Denjoe O’ConnorEmail author
Open Access
Regular Article - Theoretical Physics

Abstract

We study the maximally supersymmetric plane wave matrix model (the BMN model) at finite temperature, T, and locate the high temperature phase boundary in the (μ, T) plane, where μ is the mass parameter. We find the first transition, as the system is cooled from high temperatures, is from an approximately SO(9) symmetric phase to one where three matrices expand to form fuzzy spheres. For μ > 3.0 there is a second distinct transition at a lower temperature. The two transitions approach one another at smaller μ and merge in the vicinity of μ = 3.0. The resulting single transition curve then approaches the gauge/gravity prediction as μ is further decreased. We find a rough estimate of the transition, for all μ, is given by a Padé resummation of the large-μ, three-loop perturbative predictions. We find evidence that the transition at small μ is to an M5-brane phase of the theory.

Keywords

Gauge-gravity correspondence Lattice Quantum Field Theory M(atrix) Theories Supersymmetric Gauge Theory 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    D.E. Berenstein, J.M. Maldacena and H.S. Nastase, Strings in flat space and pp waves from N=4 Super Yang Mills, AIP Conf. Proc. 646 (2003) 3.Google Scholar
  2. [2]
    T. Banks, W. Fischler, S.H. Shenker and L. Susskind, M theory as a matrix model: A conjecture, Phys. Rev. D 55 (1997) 5112 [hep-th/9610043] [INSPIRE]ADSzbMATHMathSciNetGoogle Scholar
  3. [3]
    P.K. Townsend, The eleven-dimensional supermembrane revisited, Phys. Lett. B 350 (1995) 184 [hep-th/9501068] [INSPIRE]
  4. [4]
    L. Susskind, Another conjecture about M(atrix) theory, hep-th/9704080 [INSPIRE].
  5. [5]
    K. Dasgupta, M.M. Sheikh-Jabbari and M. Van Raamsdonk, Matrix perturbation theory for M-theory on a PP wave, JHEP 05 (2002) 056 [hep-th/0205185] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  6. [6]
    K. Dasgupta, M.M. Sheikh-Jabbari and M. Van Raamsdonk, Protected multiplets of M-theory on a plane wave, JHEP 09 (2002) 021 [hep-th/0207050] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  7. [7]
    J.M. Maldacena, M.M. Sheikh-Jabbari and M. Van Raamsdonk, Transverse five-branes in matrix theory, JHEP 01 (2003) 038 [hep-th/0211139] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  8. [8]
    M. Spradlin, M. Van Raamsdonk and A. Volovich, Two-loop partition function in the planar plane-wave matrix model, Phys. Lett. B 603 (2004) 239 [hep-th/0409178] [INSPIRE].
  9. [9]
    S. Hadizadeh, B. Ramadanovic, G.W. Semenoff and D. Young, Free energy and phase transition of the matrix model on a plane-wave, Phys. Rev. D 71 (2005) 065016 [hep-th/0409318] [INSPIRE].
  10. [10]
    M.S. Costa, L. Greenspan, J. Penedones and J. Santos, Thermodynamics of the BMN matrix model at strong coupling, JHEP 03 (2015) 069 [arXiv:1411.5541] [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  11. [11]
    H. Lin, O. Lunin and J.M. Maldacena, Bubbling AdS space and 1/2 BPS geometries, JHEP 10 (2004) 025 [hep-th/0409174] [INSPIRE].
  12. [12]
    H. Lin and J.M. Maldacena, Fivebranes from gauge theory, Phys. Rev. D 74 (2006) 084014 [hep-th/0509235] [INSPIRE].
  13. [13]
    Y. Asano, G. Ishiki, T. Okada and S. Shimasaki, Emergent bubbling geometries in the plane wave matrix model, JHEP 05 (2014) 075 [arXiv:1401.5079] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    Y. Asano, G. Ishiki and S. Shimasaki, Emergent bubbling geometries in gauge theories with SU(2|4) symmetry, JHEP 09 (2014) 137 [arXiv:1406.1337] [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  15. [15]
    Y. Asano, G. Ishiki, S. Shimasaki and S. Terashima, Spherical transverse M5-branes in matrix theory, Phys. Rev. D 96 (2017) 126003 [arXiv:1701.07140] [INSPIRE].ADSzbMATHGoogle Scholar
  16. [16]
    Y. Asano, G. Ishiki, S. Shimasaki and S. Terashima, Spherical transverse M5-branes from the plane wave matrix model, JHEP 02 (2018) 076 [arXiv:1711.07681] [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  17. [17]
    S. Catterall and G. van Anders, First Results from Lattice Simulation of the PWMM, JHEP 09 (2010) 088 [arXiv:1003.4952] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  18. [18]
    N. Kawahara, J. Nishimura and K. Yoshida, Dynamical aspects of the plane-wave matrix model at finite temperature, JHEP 06 (2006) 052 [hep-th/0601170] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  19. [19]
    G. Ishiki, S.-W. Kim, J. Nishimura and A. Tsuchiya, Deconfinement phase transition in N = 4 super Yang-Mills theory on R × S 3 from supersymmetric matrix quantum mechanics, Phys. Rev. Lett. 102 (2009) 111601 [arXiv:0810.2884] [INSPIRE].
  20. [20]
    G. Ishiki, S.-W. Kim, J. Nishimura and A. Tsuchiya, Testing a novel large-N reduction for N = 4 super Yang-Mills theory on R × S 3, JHEP 09 (2009) 029 [arXiv:0907.1488] [INSPIRE].
  21. [21]
    M. Honda, G. Ishiki, S.-W. Kim, J. Nishimura and A. Tsuchiya, Direct test of the AdS/CFT correspondence by Monte Carlo studies of N = 4 super Yang-Mills theory, JHEP 11 (2013) 200 [arXiv:1308.3525] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    R. Delgadillo-Blando, D. O'Connor and B. Ydri, Geometry in Transition: A Model of Emergent Geometry, Phys. Rev. Lett. 100 (2008) 201601 [arXiv:0712.3011] [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  23. [23]
    R. Delgadillo-Blando, D. O'Connor and B. Ydri, Matrix Models, Gauge Theory and Emergent Geometry, JHEP 05 (2009) 049 [arXiv:0806.0558] [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  24. [24]
    D. O'Connor, B.P. Dolan and M. Vachovski, Critical Behaviour of the Fuzzy Sphere, JHEP 12 (2013) 085 [arXiv:1308.6512] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    Y. Asano and D. O'Connor, Checking gauge/gravity duality with the BFSS model by different lattice discretisations, in preparation.Google Scholar
  26. [26]
    K.N. Anagnostopoulos, M. Hanada, J. Nishimura and S. Takeuchi, Monte Carlo studies of supersymmetric matrix quantum mechanics with sixteen supercharges at finite temperature, Phys. Rev. Lett. 100 (2008) 021601 [arXiv:0707.4454] [INSPIRE].
  27. [27]
    S. Catterall and T. Wiseman, Black hole thermodynamics from simulations of lattice Yang-Mills theory, Phys. Rev. D 78 (2008) 041502 [arXiv:0803.4273] [INSPIRE].
  28. [28]
    M. Hanada, A Users’ Manual of Monte Carlo Code for the Matrix Model of M-theory, https://sites.google.com/site/hanadamasanori/home/mmmm.
  29. [29]
    E. Berkowitz, E. Rinaldi, M. Hanada, G. Ishiki, S. Shimasaki and P. Vranas, Precision lattice test of the gauge/gravity duality at large-N, Phys. Rev. D 94 (2016) 094501 [arXiv:1606.04951] [INSPIRE].
  30. [30]
    V.G. Filev and D. O'Connor, The BFSS model on the lattice, JHEP 05 (2016) 167 [arXiv:1506.01366] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    Y. Asano, V.G. Filev, S. Kováčik and D. O'Connor, The flavoured BFSS model at high temperature, JHEP 01 (2017) 113 [arXiv:1605.05597] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  32. [32]
    J. Maldacena and A. Milekhin, To gauge or not to gauge?, JHEP 04 (2018) 084 [arXiv:1802.00428] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  33. [33]
    E. Berkowitz, M. Hanada, E. Rinaldi and P. Vranas, Gauged And Ungauged: A Nonperturbative Test, JHEP 06 (2018) 124 [arXiv:1802.02985] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  34. [34]
    N. Kim, K.-M. Lee and P. Yi, Deformed matrix theories with N = 8 and five-branes in the PP wave background, JHEP 11 (2002) 009 [hep-th/0207264] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    Y. Asano, V.G. Filev, S. Kováčik and D. O'Connor, A computer test of holographic avour dynamics. Part II, JHEP 03 (2018) 055 [arXiv:1612.09281] [INSPIRE].
  36. [36]
    V.G. Filev and D. O'Connor, A Computer Test of Holographic Flavour Dynamics, JHEP 05 (2016) 122 [arXiv:1512.02536] [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.School of Theoretical PhysicsDublin Institute for Advanced StudiesDublin 4Ireland
  2. 2.KEK Theory Center, High Energy Accelerator Research OrganizationTsukubaJapan
  3. 3.Institute of Mathematics and InformaticsBulgarian Academy of SciencesSofiaBulgaria

Personalised recommendations