Advertisement

NLO and off-shell effects in top quark mass determinations

  • Gudrun HeinrichEmail author
  • Andreas Maier
  • Richard Nisius
  • Johannes Schlenk
  • Markus Schulze
  • Ludovic Scyboz
  • Jan Winter
Open Access
Regular Article - Theoretical Physics

Abstract

We study the impact of different theoretical descriptions of top quark pair production on top quark mass measurements in the di-lepton channel. To this aim, the full NLO corrections to \( pp\to {W}^{+}{W}^{-}b\overline{b}\to \left({e}^{+}{\nu}_e\right)\left({\mu}^{-}{\overline{\nu}}_{\mu}\right)b\overline{b} \) production are compared to calculations in the narrow width approximation, where the production of a top quark pair is calculated at NLO and combined with three different descriptions of the top quark decay: leading order, next-to-leading order and via a parton shower. The different theory predictions then enter the calibration of template fit functions, which are used for a fit to pseudo-data. The offsets in the top quark mass resulting from the fits based on the various theoretical descriptions are determined.

Keywords

QCD Phenomenology NLO Computations 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    M. Czakon, M.L. Mangano, A. Mitov and J. Rojo, Constraints on the gluon PDF from top quark pair production at hadron colliders, JHEP 07 (2013) 167 [arXiv:1303.7215] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    M. Guzzi, K. Lipka and S.-O. Moch, Top-quark pair production at hadron colliders: differential cross section and phenomenological applications with DiffTop, JHEP 01 (2015) 082 [arXiv:1406.0386] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    V. del Duca and E. Laenen, Top physics at the LHC, Int. J. Mod. Phys. A 30 (2015) 1530063 [arXiv:1510.06690] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    M. Czakon, N.P. Hartland, A. Mitov, E.R. Nocera and J. Rojo, Pinning down the large-x gluon with NNLO top-quark pair differential distributions, JHEP 04 (2017) 044 [arXiv:1611.08609] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    CDF collaboration, T. Aaltonen et al., Final combination of the CDF results on top-quark mass, CDF Note 11080 (2014).Google Scholar
  6. [6]
    D0 collaboration, V.M. Abazov et al., Combination of D0 measurements of the top quark mass, Phys. Rev. D 95 (2017) 112004 [arXiv:1703.06994] [INSPIRE].
  7. [7]
    ATLAS collaboration, Measurement of the top quark mass in the \( t\overline{t} \)lepton+jets channel from \( \sqrt{s}=8 \) TeV ATLAS data, ATLAS-CONF-2017-071 (2017).
  8. [8]
    CMS collaboration, Measurement of the top quark mass using proton-proton data at \( \sqrt{(s)}=7 \) and 8 TeV, Phys. Rev. D 93 (2016) 072004 [arXiv:1509.04044] [INSPIRE].
  9. [9]
    √ATLAS collaboration, Measurement of the top quark mass in the \( t\overline{t} \)dilepton channel from \( \sqrt{s}=8 \) TeV ATLAS data, Phys. Lett. B 761 (2016) 350 [arXiv:1606.02179] [INSPIRE].
  10. [10]
    S. Frixione and A. Mitov, Determination of the top quark mass from leptonic observables, JHEP 09 (2014) 012 [arXiv:1407.2763] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    M. Beneke, P. Marquard, P. Nason and M. Steinhauser, On the ultimate uncertainty of the top quark pole mass, Phys. Lett. B 775 (2017) 63 [arXiv:1605.03609] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    M. Butenschoen, B. Dehnadi, A.H. Hoang, V. Mateu, M. Preisser and I.W. Stewart, Top Quark Mass Calibration for Monte Carlo Event Generators, Phys. Rev. Lett. 117 (2016) 232001 [arXiv:1608.01318] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    S. Kawabata and H. Yokoya, Top-quark mass from the diphoton mass spectrum, Eur. Phys. J. C 77 (2017) 323 [arXiv:1607.00990] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    A.H. Hoang et al., The MSR mass and the \( \mathcal{O}\left({\Lambda}_{\mathrm{QCD}}\right) \) renormalon sum rule, JHEP 04 (2018) 003 [arXiv:1704.01580] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    A.H. Hoang, C. Lepenik and M. Preisser, On the Light Massive Flavor Dependence of the Large Order Asymptotic Behavior and the Ambiguity of the Pole Mass, JHEP 09 (2017) 099 [arXiv:1706.08526] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    A.H. Hoang, S. Mantry, A. Pathak and I.W. Stewart, Extracting a Short Distance Top Mass with Light Grooming, arXiv:1708.02586 [INSPIRE].
  17. [17]
    G. Bevilacqua, H.B. Hartanto, M. Kraus, M. Schulze and M. Worek, Top quark mass studies with \( t\overline{t}j \) at the LHC, JHEP 03 (2018) 169 [arXiv:1710.07515] [INSPIRE].CrossRefGoogle Scholar
  18. [18]
    P. Nason, The Top Mass in Hadronic Collisions, arXiv:1712.02796.
  19. [19]
    G. Corcella, R. Franceschini and D. Kim, Fragmentation Uncertainties in Hadronic Observables for Top-quark Mass Measurements, Nucl. Phys. B 929 (2018) 485 [arXiv:1712.05801] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    S. Ferrario Ravasio, T. Ježo, P. Nason and C. Oleari, A theoretical study of top-mass measurements at the LHC using NLO+PS generators of increasing accuracy, Eur. Phys. J. C 78 (2018) 458 [arXiv:1801.03944] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    A.H. Hoang, C. Lepenik and M. Preisser, On the Light Massive Flavor Dependence of the Top Quark Mass, PoS(RADCOR2017)051 [arXiv:1802.04334] [INSPIRE].
  22. [22]
    M. Czakon, D. Heymes and A. Mitov, High-precision differential predictions for top-quark pairs at the LHC, Phys. Rev. Lett. 116 (2016) 082003 [arXiv:1511.00549] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    M. Czakon, D. Heymes and A. Mitov, Dynamical scales for multi-TeV top-pair production at the LHC, JHEP 04 (2017) 071 [arXiv:1606.03350] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    M. Czakon, D. Heymes and A. Mitov, fastNLO tables for NNLO top-quark pair differential distributions, arXiv:1704.08551 [INSPIRE].
  25. [25]
    M. Czakon, D. Heymes, A. Mitov, D. Pagani, I. Tsinikos and M. Zaro, Top-pair production at the LHC through NNLO QCD and NLO EW, JHEP 10 (2017) 186 [arXiv:1705.04105] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    W. Hollik and D. Pagani, The electroweak contribution to the top quark forward-backward asymmetry at the Tevatron, Phys. Rev. D 84 (2011) 093003 [arXiv:1107.2606] [INSPIRE].ADSGoogle Scholar
  27. [27]
    J.H. Kühn, A. Scharf and P. Uwer, Weak Interactions in Top-Quark Pair Production at Hadron Colliders: An Update, Phys. Rev. D 91 (2015) 014020 [arXiv:1305.5773] [INSPIRE].ADSGoogle Scholar
  28. [28]
    D. Pagani, I. Tsinikos and M. Zaro, The impact of the photon PDF and electroweak corrections on \( t\overline{t} \) distributions, Eur. Phys. J. C 76 (2016) 479 [arXiv:1606.01915] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    A. Denner and M. Pellen, NLO electroweak corrections to off-shell top-antitop production with leptonic decays at the LHC, JHEP 08 (2016) 155 [arXiv:1607.05571] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    C. Gütschow, J.M. Lindert and M. Schönherr, Multi-jet merged top-pair production including electroweak corrections, Eur. Phys. J. C 78 (2018) 317 [arXiv:1803.00950] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    W. Bernreuther, A. Brandenburg, Z.G. Si and P. Uwer, Top quark pair production and decay at hadron colliders, Nucl. Phys. B 690 (2004) 81 [hep-ph/0403035] [INSPIRE].
  32. [32]
    K. Melnikov and M. Schulze, NLO QCD corrections to top quark pair production and decay at hadron colliders, JHEP 08 (2009) 049 [arXiv:0907.3090] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    J.M. Campbell and R.K. Ellis, Top-Quark Processes at NLO in Production and Decay, J. Phys. G 42 (2015) 015005 [arXiv:1204.1513] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    M. Brucherseifer, F. Caola and K. Melnikov, \( \mathcal{O}\left({\alpha}_s^2\right) \) corrections to fully-differential top quark decays, JHEP 04 (2013) 059 [arXiv:1301.7133] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    J. Gao and A.S. Papanastasiou, Top-quark pair-production and decay at high precision, Phys. Rev. D 96 (2017) 051501 [arXiv:1705.08903] [INSPIRE].ADSGoogle Scholar
  36. [36]
    M. Beneke, P. Falgari, S. Klein and C. Schwinn, Hadronic top-quark pair production with NNLL threshold resummation, Nucl. Phys. B 855 (2012) 695 [arXiv:1109.1536] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  37. [37]
    M. Cacciari, M. Czakon, M. Mangano, A. Mitov and P. Nason, Top-pair production at hadron colliders with next-to-next-to-leading logarithmic soft-gluon resummation, Phys. Lett. B 710 (2012) 612 [arXiv:1111.5869] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    A. Ferroglia, S. Marzani, B.D. Pecjak and L.L. Yang, Boosted top production: factorization and resummation for single-particle inclusive distributions, JHEP 01 (2014) 028 [arXiv:1310.3836] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    A. Broggio, A.S. Papanastasiou and A. Signer, Renormalization-group improved fully differential cross sections for top pair production, JHEP 10 (2014) 98 [arXiv:1407.2532] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    N. Kidonakis, High-order threshold corrections for top-pair and single-top production, in Proceedings, Meeting of the APS Division of Particles and Fields (DPF 2015), Ann Arbor, Michigan, U.S.A., 4–8 August 2015 (2015) [arXiv:1509.07848] [INSPIRE].
  41. [41]
    B.D. Pecjak, D.J. Scott, X. Wang and L.L. Yang, Resummed differential cross sections for top-quark pairs at the LHC, Phys. Rev. Lett. 116 (2016) 202001 [arXiv:1601.07020] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    A. Denner, S. Dittmaier, S. Kallweit and S. Pozzorini, NLO QCD corrections to WWbb production at hadron colliders, Phys. Rev. Lett. 106 (2011) 052001 [arXiv:1012.3975] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    A. Denner, S. Dittmaier, S. Kallweit and S. Pozzorini, NLO QCD corrections to off-shell top-antitop production with leptonic decays at hadron colliders, JHEP 10 (2012) 110 [arXiv:1207.5018] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    G. Bevilacqua, M. Czakon, A. van Hameren, C.G. Papadopoulos and M. Worek, Complete off-shell effects in top quark pair hadroproduction with leptonic decay at next-to-leading order, JHEP 02 (2011) 083 [arXiv:1012.4230] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    G. Heinrich, A. Maier, R. Nisius, J. Schlenk and J. Winter, NLO QCD corrections to \( {W}^{+}{W}^{-}b\overline{b} \) production with leptonic decays in the light of top quark mass and asymmetry measurements, JHEP 06 (2014) 158 [arXiv:1312.6659] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    A. Denner and M. Pellen, Off-shell production of top-antitop pairs in the lepton+jets channel at NLO QCD, JHEP 02 (2018) 013 [arXiv:1711.10359] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    R. Frederix, Top Quark Induced Backgrounds to Higgs Production in the WW (*)llνν Decay Channel at Next-to-Leading-Order in QCD, Phys. Rev. Lett. 112 (2014) 082002 [arXiv:1311.4893] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    F. Cascioli, S. Kallweit, P. Maierhöfer and S. Pozzorini, A unified NLO description of top-pair and associated Wt production, Eur. Phys. J. C 74 (2014) 2783 [arXiv:1312.0546] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    J.M. Campbell, R.K. Ellis, P. Nason and E. Re, Top-Pair Production and Decay at NLO Matched with Parton Showers, JHEP 04 (2015) 114 [arXiv:1412.1828] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    P. Nason, A New method for combining NLO QCD with shower Monte Carlo algorithms, JHEP 11 (2004) 040 [hep-ph/0409146] [INSPIRE].
  51. [51]
    S. Frixione, P. Nason and C. Oleari, Matching NLO QCD computations with Parton Shower simulations: the POWHEG method, JHEP 11 (2007) 070 [arXiv:0709.2092] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    S. Alioli, P. Nason, C. Oleari and E. Re, A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX, JHEP 06 (2010) 043 [arXiv:1002.2581] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  53. [53]
    S. Höche, F. Krauss, P. Maierhöfer, S. Pozzorini, M. Schönherr and F. Siegert, Next-to-leading order QCD predictions for top-quark pair production with up to two jets merged with a parton shower, Phys. Lett. B 748 (2015) 74 [arXiv:1402.6293] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    S. Höche, P. Maierhöfer, N. Moretti, S. Pozzorini and F. Siegert, Next-to-leading order QCD predictions for top-quark pair production with up to three jets, Eur. Phys. J. C 77 (2017) 145 [arXiv:1607.06934] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    J. Bellm et al., Top Quark Production and Decay in HERWIG 7.1, arXiv:1711.11570 [INSPIRE].
  56. [56]
    M.V. Garzelli, A. Kardos and Z. Trócsanyi, Hadroproduction of \( {W}^{+}{W}^{-}b\overline{b} \) at NLO accuracy matched with shower Monte Carlo programs, JHEP 08 (2014) 069 [arXiv:1405.5859] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    T. Ježo and P. Nason, On the Treatment of Resonances in Next-to-Leading Order Calculations Matched to a Parton Shower, JHEP 12 (2015) 065 [arXiv:1509.09071] [INSPIRE].ADSGoogle Scholar
  58. [58]
    F. Cascioli, P. Maierhöfer and S. Pozzorini, Scattering Amplitudes with Open Loops, Phys. Rev. Lett. 108 (2012) 111601 [arXiv:1111.5206] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    T. Ježo, J.M. Lindert, P. Nason, C. Oleari and S. Pozzorini, An NLO+PS generator for \( t\overline{t} \) and Wt production and decay including non-resonant and interference effects, Eur. Phys. J. C 76 (2016) 691 [arXiv:1607.04538] [INSPIRE].ADSGoogle Scholar
  60. [60]
    L. Buonocore, P. Nason and F. Tramontano, Heavy quark radiation in NLO+PS POWHEG generators, Eur. Phys. J. C 78 (2018) 151 [arXiv:1711.06281] [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    R. Frederix, S. Frixione, A.S. Papanastasiou, S. Prestel and P. Torrielli, Off-shell single-top production at NLO matched to parton showers, JHEP 06 (2016) 027 [arXiv:1603.01178] [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    B. Chokoufé Nejad, W. Kilian, J.M. Lindert, S. Pozzorini, J. Reuter and C. Weiss, NLO QCD predictions for off-shell \( t\overline{t}\kern0.5em and\kern0.5em t\overline{t}H \) production and decay at a linear collider, JHEP 12 (2016)075 [arXiv:1609.03390] [INSPIRE].
  63. [63]
    ATLAS collaboration, Measurement of the top quark mass in the \( t\overline{t} \)lepton+jets and \( t\overline{t} \)dilepton channels using \( \sqrt{s}=7 \) TeV ATLAS data, Eur. Phys. J. C 75 (2015) 330 [arXiv:1503.05427] [INSPIRE].
  64. [64]
    T. Gleisberg et al., Event generation with SHERPA 1.1, JHEP 02 (2009) 007 [arXiv:0811.4622] [INSPIRE].
  65. [65]
    G. Cullen et al., Automated One-Loop Calculations with GoSam, Eur. Phys. J. C 72 (2012) 1889 [arXiv:1111.2034] [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    G. Cullen et al., GoSam-2.0: a tool for automated one-loop calculations within the Standard Model and beyond, Eur. Phys. J. C 74 (2014) 3001 [arXiv:1404.7096] [INSPIRE].
  67. [67]
    T. Binoth et al., A proposal for a standard interface between Monte Carlo tools and one-loop programs, Comput. Phys. Commun. 181 (2010) 1612 [arXiv:1001.1307] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  68. [68]
    S. Alioli et al., Update of the Binoth Les Houches Accord for a standard interface between Monte Carlo tools and one-loop programs, Comput. Phys. Commun. 185 (2014) 560 [arXiv:1308.3462] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  69. [69]
    A. Denner and S. Dittmaier, The Complex-mass scheme for perturbative calculations with unstable particles, Nucl. Phys. Proc. Suppl. 160 (2006) 22 [hep-ph/0605312] [INSPIRE].
  70. [70]
    S. Höche, F. Krauss, M. Schönherr and F. Siegert, A critical appraisal of NLO+PS matching methods, JHEP 09 (2012) 049 [arXiv:1111.1220] [INSPIRE].CrossRefGoogle Scholar
  71. [71]
    S. Höche, J. Huang, G. Luisoni, M. Schönherr and J. Winter, Zero and one jet combined next-to-leading order analysis of the top quark forward-backward asymmetry, Phys. Rev. D 88 (2013) 014040 [arXiv:1306.2703] [INSPIRE].ADSGoogle Scholar
  72. [72]
    S. Höche, S. Kuttimalai, S. Schumann and F. Siegert, Beyond Standard Model calculations with Sherpa, Eur. Phys. J. C 75 (2015) 135 [arXiv:1412.6478] [INSPIRE].ADSCrossRefGoogle Scholar
  73. [73]
    K. Hamilton and P. Richardson, A simulation of QCD radiation in top quark decays, JHEP 02 (2007) 069 [hep-ph/0612236] [INSPIRE].
  74. [74]
    C.G. Lester and D.J. Summers, Measuring masses of semiinvisibly decaying particles pair produced at hadron colliders, Phys. Lett. B 463 (1999) 99 [hep-ph/9906349] [INSPIRE].
  75. [75]
    A. Barr, C. Lester and P. Stephens, m T2 : The truth behind the glamour, J. Phys. G 29 (2003) 2343 [hep-ph/0304226] [INSPIRE].
  76. [76]
    ATLAS collaboration, Measurement of lepton differential distributions and the top quark mass in \( t\overline{t} \) production in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, ATLAS-CONF-2017-044 (2017).
  77. [77]
    J. Butterworth et al., PDF4LHC recommendations for LHC Run II, J. Phys. G 43 (2016) 023001 [arXiv:1510.03865] [INSPIRE].ADSCrossRefGoogle Scholar
  78. [78]
    S. Dulat et al., New parton distribution functions from a global analysis of quantum chromodynamics, Phys. Rev. D 93 (2016) 033006 [arXiv:1506.07443] [INSPIRE].ADSGoogle Scholar
  79. [79]
    L.A. Harland-Lang, A.D. Martin, P. Motylinski and R.S. Thorne, Parton distributions in the LHC era: MMHT 2014 PDFs, Eur. Phys. J. C 75 (2015) 204 [arXiv:1412.3989] [INSPIRE].ADSCrossRefGoogle Scholar
  80. [80]
    NNPDF collaboration, R.D. Ball et al., Parton distributions for the LHC Run II, JHEP 04 (2015) 040 [arXiv:1410.8849] [INSPIRE].
  81. [81]
    M. Jezabek and J.H. Kühn, Semileptonic Decays of Top Quarks, Phys. Lett. B 207 (1988) 91 [INSPIRE].ADSCrossRefGoogle Scholar
  82. [82]
    M. Cacciari, G.P. Salam and G. Soyez, The anti-k t jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  83. [83]
    M. Cacciari, G.P. Salam and G. Soyez, FastJet User Manual, Eur. Phys. J. C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].ADSCrossRefGoogle Scholar
  84. [84]
    A.A. Maier, Precision Measurements of the Top Quark Mass in the Dileptonic Top Quark Pair Decay Channel at ATLAS, Ph.D. Thesis, Max Planck Institute for Physics, Munich, Germany [https://publications.mppmu.mpg.de/2016/MPP-2016-76/FullText.pdf].

Copyright information

© The Author(s) 2018

Authors and Affiliations

  • Gudrun Heinrich
    • 1
    Email author
  • Andreas Maier
    • 2
  • Richard Nisius
    • 1
  • Johannes Schlenk
    • 3
  • Markus Schulze
    • 4
  • Ludovic Scyboz
    • 1
  • Jan Winter
    • 5
  1. 1.Max-Planck-Institut für PhysikMünchenGermany
  2. 2.Experimental Physics Department, CERNGeneva 23Switzerland
  3. 3.IPPPUniversity of DurhamDurhamU.K.
  4. 4.Institut für PhysikHumboldt-Universität zu BerlinBerlinGermany
  5. 5.Department of Physics and AstronomyMichigan State UniversityEast LansingU.S.A.

Personalised recommendations