NA62 sensitivity to heavy neutral leptons in the low scale seesaw model

Abstract

The sensitivity of beam dump experiments to heavy neutral leptons depends on the relative strength of their couplings to individual lepton flavours in the Standard Model. We study the impact of present neutrino oscillation data on these couplings in the minimal type I seesaw model and find that it significantly constrains the allowed heavy neutrino flavour mixing patterns. We estimate the effect that the DUNE experiment will have on these predictions. We then discuss implication that this has for the sensitivity of the NA62 experiment when operated in the beam dump mode and provide sensitivity estimates for different benchmark scenarios. We find that the sensitivity can vary by almost two orders of magnitude for general choices of the model parameters, but depends only weakly on the flavour mixing pattern within the parameter range that is preferred by neutrino oscillation data.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    P. Minkowski, μeγ at a rate of one out of 109 muon decays?, Phys. Lett. B 67 (1977) 421 [INSPIRE].

  2. [2]

    M. Gell-Mann, P. Ramond and R. Slansky, Complex spinors and unified theories, Conf. Proc. C 790927 (1979) 315 [arXiv:1306.4669] [INSPIRE].

  3. [3]

    R.N. Mohapatra and G. Senjanović, Neutrino mass and spontaneous parity violation, Phys. Rev. Lett. 44 (1980) 912 [INSPIRE].

    ADS  Article  Google Scholar 

  4. [4]

    T. Yanagida, Horizontal symmetry and masses of neutrinos, Prog. Theor. Phys. 64 (1980) 1103 [INSPIRE].

    ADS  Article  Google Scholar 

  5. [5]

    J. Schechter and J.W.F. Valle, Neutrino masses in SU(2) × U(1) theories, Phys. Rev. D 22 (1980) 2227 [INSPIRE].

    ADS  Google Scholar 

  6. [6]

    J. Schechter and J.W.F. Valle, Neutrino decay and spontaneous violation of lepton number, Phys. Rev. D 25 (1982) 774 [INSPIRE].

  7. [7]

    M. Drewes, The phenomenology of right handed neutrinos, Int. J. Mod. Phys. E 22 (2013) 1330019 [arXiv:1303.6912] [INSPIRE].

    ADS  Article  Google Scholar 

  8. [8]

    M. D’Onofrio, K. Rummukainen and A. Tranberg, Sphaleron rate in the minimal Standard Model, Phys. Rev. Lett. 113 (2014) 141602 [arXiv:1404.3565] [INSPIRE].

    ADS  Article  Google Scholar 

  9. [9]

    V.A. Kuzmin, V.A. Rubakov and M.E. Shaposhnikov, On the anomalous electroweak baryon number nonconservation in the early universe, Phys. Lett. B 155 (1985) 36 [INSPIRE].

  10. [10]

    M. Fukugita and T. Yanagida, Baryogenesis without grand unification, Phys. Lett. B 174 (1986) 45 [INSPIRE].

    ADS  Article  Google Scholar 

  11. [11]

    E.K. Akhmedov, V.A. Rubakov and A. Yu. Smirnov, Baryogenesis via neutrino oscillations, Phys. Rev. Lett. 81 (1998) 1359 [hep-ph/9803255] [INSPIRE].

  12. [12]

    T. Asaka and M. Shaposhnikov, The νMSM, dark matter and baryon asymmetry of the universe, Phys. Lett. B 620 (2005) 17 [hep-ph/0505013] [INSPIRE].

  13. [13]

    T. Hambye and D. Teresi, Higgs doublet decay as the origin of the baryon asymmetry, Phys. Rev. Lett. 117 (2016) 091801 [arXiv:1606.00017] [INSPIRE].

  14. [14]

    L. Canetti, M. Drewes and M. Shaposhnikov, Matter and antimatter in the universe, New J. Phys. 14 (2012) 095012 [arXiv:1204.4186] [INSPIRE].

  15. [15]

    L. Canetti, M. Drewes, T. Frossard and M. Shaposhnikov, Dark matter, baryogenesis and neutrino oscillations from right handed neutrinos, Phys. Rev. D 87 (2013) 093006 [arXiv:1208.4607] [INSPIRE].

  16. [16]

    M. Shaposhnikov, The νMSM, leptonic asymmetries and properties of singlet fermions, JHEP 08 (2008) 008 [arXiv:0804.4542] [INSPIRE].

  17. [17]

    P. Hernández, M. Kekic and J. Lopez-Pavon, Low-scale seesaw models versus N eff , Phys. Rev. D 89 (2014) 073009 [arXiv:1311.2614] [INSPIRE].

  18. [18]

    O. Ruchayskiy and A. Ivashko, Restrictions on the lifetime of sterile neutrinos from primordial nucleosynthesis, JCAP 10 (2012) 014 [arXiv:1202.2841] [INSPIRE].

    ADS  Article  Google Scholar 

  19. [19]

    O. Ruchayskiy and A. Ivashko, Experimental bounds on sterile neutrino mixing angles, JHEP 06 (2012) 100 [arXiv:1112.3319] [INSPIRE].

    ADS  Article  Google Scholar 

  20. [20]

    T. Asaka, S. Eijima and H. Ishida, Mixing of active and sterile neutrinos, JHEP 04 (2011) 011 [arXiv:1101.1382] [INSPIRE].

    ADS  Article  Google Scholar 

  21. [21]

    P. Hernández, M. Kekic and J. Lopez-Pavon, N eff in low-scale seesaw models versus the lightest neutrino mass, Phys. Rev. D 90 (2014) 065033 [arXiv:1406.2961] [INSPIRE].

  22. [22]

    J. Heeck and S. Patra, Minimal left-right symmetric dark matter, Phys. Rev. Lett. 115 (2015) 121804 [arXiv:1507.01584] [INSPIRE].

    ADS  Article  Google Scholar 

  23. [23]

    P.S. Bhupal Dev, R.N. Mohapatra and Y. Zhang, Naturally stable right-handed neutrino dark matter, JHEP 11 (2016) 077 [arXiv:1608.06266] [INSPIRE].

    ADS  Article  Google Scholar 

  24. [24]

    S. Dodelson and L.M. Widrow, Sterile-neutrinos as dark matter, Phys. Rev. Lett. 72 (1994) 17 [hep-ph/9303287] [INSPIRE].

  25. [25]

    X.-D. Shi and G.M. Fuller, A new dark matter candidate: nonthermal sterile neutrinos, Phys. Rev. Lett. 82 (1999) 2832 [astro-ph/9810076] [INSPIRE].

  26. [26]

    M. Drewes et al., A white paper on keV sterile neutrino dark matter, JCAP 01 (2017) 025 [arXiv:1602.04816] [INSPIRE].

    Google Scholar 

  27. [27]

    T. Asaka, S. Blanchet and M. Shaposhnikov, The νMSM, dark matter and neutrino masses, Phys. Lett. B 631 (2005) 151 [hep-ph/0503065] [INSPIRE].

  28. [28]

    NA62 collaboration, E. Cortina Gil et al., The beam and detector of the NA62 experiment at CERN, 2017 JINST 12 P05025 [arXiv:1703.08501] [INSPIRE].

  29. [29]

    R.E. Shrock, General theory of weak leptonic and semileptonic decays. 1. Leptonic pseudoscalar meson decays, with associated tests for and bounds on, neutrino masses and lepton mixing, Phys. Rev. D 24 (1981) 1232 [INSPIRE].

  30. [30]

    R.E. Shrock, General theory of weak processes involving neutrinos. 2. Pure leptonic decays, Phys. Rev. D 24 (1981) 1275 [INSPIRE].

  31. [31]

    D. Gorbunov and M. Shaposhnikov, How to find neutral leptons of the νMSM?, JHEP 10 (2007) 015 [Erratum ibid. 11 (2013) 101] [arXiv:0705.1729] [INSPIRE].

  32. [32]

    R.E. Shrock, New tests for and bounds on, neutrino masses and lepton mixing, Phys. Lett. B 96 (1980) 159 [INSPIRE].

  33. [33]

    NA62 collaboration, E. Cortina Gil et al., Search for heavy neutral lepton production in K + decays, Phys. Lett. B 778 (2018) 137 [arXiv:1712.00297] [INSPIRE].

  34. [34]

    L. Canetti and M. Shaposhnikov, Baryon asymmetry of the universe in the νMSM, JCAP 09 (2010) 001 [arXiv:1006.0133] [INSPIRE].

    ADS  Article  Google Scholar 

  35. [35]

    L. Canetti, M. Drewes and M. Shaposhnikov, Sterile neutrinos as the origin of dark and baryonic matter, Phys. Rev. Lett. 110 (2013) 061801 [arXiv:1204.3902] [INSPIRE].

  36. [36]

    E.J. Chun et al., Probing leptogenesis, Int. J. Mod. Phys. A 33 (2018) 1842005 [arXiv:1711.02865] [INSPIRE].

  37. [37]

    P. Hernández, M. Kekic, J. López-Pavón, J. Racker and J. Salvado, Testable baryogenesis in seesaw models, JHEP 08 (2016) 157 [arXiv:1606.06719] [INSPIRE].

    ADS  Article  Google Scholar 

  38. [38]

    M. Drewes, B. Garbrecht, D. Gueter and J. Klaric, Testing the low scale seesaw and leptogenesis, JHEP 08 (2017) 018 [arXiv:1609.09069] [INSPIRE].

    ADS  Article  Google Scholar 

  39. [39]

    S. Antusch et al., Probing leptogenesis at future colliders, arXiv:1710.03744 [INSPIRE].

  40. [40]

    G. Bernardi et al., Further limits on heavy neutrino couplings, Phys. Lett. B 203 (1988) 332 [INSPIRE].

  41. [41]

    CHARM collaboration, F. Bergsma et al., A search for decays of heavy neutrinos in the mass range 0.5-2.8 GeV, Phys. Lett. B 166 (1986) 473 [INSPIRE].

  42. [42]

    NuTeV and E815 collaborations, A. Vaitaitis et al., Search for neutral heavy leptons in a high-energy neutrino beam, Phys. Rev. Lett. 83 (1999) 4943 [hep-ex/9908011] [INSPIRE].

  43. [43]

    A.G. Vaitaitis, Search for neutral heavy leptons in a high-energy neutrino beam, Ph.D. thesis, Columbia U., New York, U.S.A., (2000) [INSPIRE].

  44. [44]

    E949 collaboration, A.V. Artamonov et al., Search for heavy neutrinos in K +μ + ν H decays, Phys. Rev. D 91 (2015) 052001 [Erratum ibid. D 91 (2015) 059903] [arXiv:1411.3963] [INSPIRE].

  45. [45]

    PIENU collaboration, M. Aoki et al., Search for massive neutrinos in the decay πeν, Phys. Rev. D 84 (2011) 052002 [arXiv:1106.4055] [INSPIRE].

  46. [46]

    D.I. Britton et al., Improved search for massive neutrinos in π+e + neutrino decay, Phys. Rev. D 46 (1992) R885 [INSPIRE].

  47. [47]

    NA3 collaboration, J. Badier et al., Direct photon production from pions and protons at 200 GeV/c, Z. Phys. C 31 (1986) 341 [INSPIRE].

  48. [48]

    K. Bondarenko, A. Boyarsky, D. Gorbunov and O. Ruchayskiy, Phenomenology of GeV-scale heavy neutral leptons, arXiv:1805.08567 [INSPIRE].

  49. [49]

    P. Coloma, P.A.N. Machado, I. Martinez-Soler and I.M. Shoemaker, Double-cascade events from new physics in IceCube, Phys. Rev. Lett. 119 (2017) 201804 [arXiv:1707.08573] [INSPIRE].

    ADS  Article  Google Scholar 

  50. [50]

    SHiP collaboration, SHiP sensitivity to heavy neutral leptons, CERN-SHiP-NOTE-2016-003, (2016).

  51. [51]

    F. Kling and S. Trojanowski, Heavy neutral leptons at FASER, Phys. Rev. D 97 (2018) 095016 [arXiv:1801.08947] [INSPIRE].

  52. [52]

    V.V. Gligorov, S. Knapen, M. Papucci and D.J. Robinson, Searching for long-lived particles: a compact detector for exotics at LHCb, Phys. Rev. D 97 (2018) 015023 [arXiv:1708.09395] [INSPIRE].

  53. [53]

    J.P. Chou, D. Curtin and H.J. Lubatti, New detectors to explore the lifetime frontier, Phys. Lett. B 767 (2017) 29 [arXiv:1606.06298] [INSPIRE].

  54. [54]

    D. Curtin et al., Long-lived particles at the energy frontier: the MATHUSLA physics case, arXiv:1806.07396 [INSPIRE].

  55. [55]

    J.C. Helo, M. Hirsch and S. Kovalenko, Heavy neutrino searches at the LHC with displaced vertices, Phys. Rev. D 89 (2014) 073005 [arXiv:1312.2900] [INSPIRE].

  56. [56]

    E. Izaguirre and B. Shuve, Multilepton and lepton jet probes of sub-weak-scale right-handed neutrinos, Phys. Rev. D 91 (2015) 093010 [arXiv:1504.02470] [INSPIRE].

  57. [57]

    S. Antusch, E. Cazzato and O. Fischer, Displaced vertex searches for sterile neutrinos at future lepton colliders, JHEP 12 (2016) 007 [arXiv:1604.02420] [INSPIRE].

    ADS  Article  Google Scholar 

  58. [58]

    A.M. Gago, P. Hernández, J. Jones-Pérez, M. Losada and A. Moreno Briceño, Probing the type I seesaw mechanism with displaced vertices at the LHC, Eur. Phys. J. C 75 (2015) 470 [arXiv:1505.05880] [INSPIRE].

  59. [59]

    S. Antusch, E. Cazzato and O. Fischer, Sterile neutrino searches via displaced vertices at LHCb, Phys. Lett. B 774 (2017) 114 [arXiv:1706.05990] [INSPIRE].

  60. [60]

    S. Antusch, E. Cazzato and O. Fischer, Sterile neutrino searches at future e e + , pp and ep colliders, Int. J. Mod. Phys. A 32 (2017) 1750078 [arXiv:1612.02728] [INSPIRE].

  61. [61]

    F.F. Deppisch, P.S. Bhupal Dev and A. Pilaftsis, Neutrinos and collider physics, New J. Phys. 17 (2015) 075019 [arXiv:1502.06541] [INSPIRE].

  62. [62]

    Y. Cai, T. Han, T. Li and R. Ruiz, Lepton number violation: seesaw models and their collider tests, Front. in Phys. 6 (2018) 40 [arXiv:1711.02180] [INSPIRE].

    ADS  Article  Google Scholar 

  63. [63]

    J. Kersten and A. Yu. Smirnov, Right-handed neutrinos at CERN LHC and the mechanism of neutrino mass generation, Phys. Rev. D 76 (2007) 073005 [arXiv:0705.3221] [INSPIRE].

  64. [64]

    M.B. Gavela, T. Hambye, D. Hernandez and P. Hernández, Minimal flavour seesaw models, JHEP 09 (2009) 038 [arXiv:0906.1461] [INSPIRE].

    ADS  Article  Google Scholar 

  65. [65]

    D. Gorbunov and A. Panin, On the minimal active-sterile neutrino mixing in seesaw type-I mechanism with sterile neutrinos at GeV scale, Phys. Rev. D 89 (2014) 017302 [arXiv:1312.2887] [INSPIRE].

  66. [66]

    M. Shaposhnikov, A possible symmetry of the νMSM, Nucl. Phys. B 763 (2007) 49 [hep-ph/0605047] [INSPIRE].

  67. [67]

    K. Moffat, S. Pascoli and C. Weiland, Equivalence between massless neutrinos and lepton number conservation in fermionic singlet extensions of the Standard Model, arXiv:1712.07611 [INSPIRE].

  68. [68]

    D. Wyler and L. Wolfenstein, Massless neutrinos in left-right symmetric models, Nucl. Phys. B 218 (1983) 205 [INSPIRE].

  69. [69]

    R.N. Mohapatra, Mechanism for understanding small neutrino mass in superstring theories, Phys. Rev. Lett. 56 (1986) 561 [INSPIRE].

    ADS  Article  Google Scholar 

  70. [70]

    R.N. Mohapatra and J.W.F. Valle, Neutrino mass and baryon number nonconservation in superstring models, Phys. Rev. D 34 (1986) 1642 [INSPIRE].

  71. [71]

    J. Bernabeu, A. Santamaria, J. Vidal, A. Mendez and J.W.F. Valle, Lepton flavor nonconservation at high-energies in a superstring inspired Standard Model, Phys. Lett. B 187 (1987) 303 [INSPIRE].

  72. [72]

    E.K. Akhmedov, M. Lindner, E. Schnapka and J.W.F. Valle, Left-right symmetry breaking in NJLS approach, Phys. Lett. B 368 (1996) 270 [hep-ph/9507275] [INSPIRE].

  73. [73]

    E.K. Akhmedov, M. Lindner, E. Schnapka and J.W.F. Valle, Dynamical left-right symmetry breaking, Phys. Rev. D 53 (1996) 2752 [hep-ph/9509255] [INSPIRE].

  74. [74]

    V.V. Khoze and G. Ro, Leptogenesis and neutrino oscillations in the classically conformal Standard Model with the Higgs portal, JHEP 10 (2013) 075 [arXiv:1307.3764] [INSPIRE].

    ADS  Article  Google Scholar 

  75. [75]

    T. Appelquist and R. Shrock, Neutrino masses in theories with dynamical electroweak symmetry breaking, Phys. Lett. B 548 (2002) 204 [hep-ph/0204141] [INSPIRE].

  76. [76]

    T. Appelquist and R. Shrock, Dynamical symmetry breaking of extended gauge symmetries, Phys. Rev. Lett. 90 (2003) 201801 [hep-ph/0301108] [INSPIRE].

  77. [77]

    I. Esteban, M.C. Gonzalez-Garcia, M. Maltoni, I. Martinez-Soler and T. Schwetz, Updated fit to three neutrino mixing: exploring the accelerator-reactor complementarity, JHEP 01 (2017) 087 [arXiv:1611.01514] [INSPIRE].

    ADS  Article  Google Scholar 

  78. [78]

    Nufit 3.1 webpage, http://nu-fit.org, (2017).

  79. [79]

    J.A. Casas and A. Ibarra, Oscillating neutrinos and μ, Nucl. Phys. B 618 (2001) 171 [hep-ph/0103065] [INSPIRE].

  80. [80]

    D. Gorbunov and I. Timiryasov, Testing νMSM with indirect searches, Phys. Lett. B 745 (2015) 29 [arXiv:1412.7751] [INSPIRE].

  81. [81]

    M. Drewes and B. Garbrecht, Combining experimental and cosmological constraints on heavy neutrinos, Nucl. Phys. B 921 (2017) 250 [arXiv:1502.00477] [INSPIRE].

  82. [82]

    F.L. Bezrukov, νMSM-predictions for neutrinoless double beta decay, Phys. Rev. D 72 (2005) 071303 [hep-ph/0505247] [INSPIRE].

  83. [83]

    J. Lopez-Pavon, S. Pascoli and C.-F. Wong, Can heavy neutrinos dominate neutrinoless double beta decay?, Phys. Rev. D 87 (2013) 093007 [arXiv:1209.5342] [INSPIRE].

  84. [84]

    T. Asaka and S. Eijima, Direct search for right-handed neutrinos and neutrinoless double beta decay, PTEP 2013 (2013) 113B02 [arXiv:1308.3550] [INSPIRE].

  85. [85]

    J. Lopez-Pavon, E. Molinaro and S.T. Petcov, Radiative corrections to light neutrino masses in low scale type I seesaw scenarios and neutrinoless double beta decay, JHEP 11 (2015) 030 [arXiv:1506.05296] [INSPIRE].

    ADS  Article  Google Scholar 

  86. [86]

    M. Drewes and S. Eijima, Neutrinoless double β decay and low scale leptogenesis, Phys. Lett. B 763 (2016) 72 [arXiv:1606.06221] [INSPIRE].

  87. [87]

    A. Caputo, P. Hernández, M. Kekic, J. López-Pavón and J. Salvado, The seesaw path to leptonic CP-violation, Eur. Phys. J. C 77 (2017) 258 [arXiv:1611.05000] [INSPIRE].

  88. [88]

    N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller and E. Teller, Equation of state calculations by fast computing machines, J. Chem. Phys. 21 (1953) 1087 [INSPIRE].

    ADS  Article  Google Scholar 

  89. [89]

    W.K. Hastings, Monte Carlo sampling methods using Markov chains and their applications, Biometrika 57 (1970) 97 [INSPIRE].

    MathSciNet  Article  MATH  Google Scholar 

  90. [90]

    A. Faessler, M. González, S. Kovalenko and F. Šimkovic, Arbitrary mass Majorana neutrinos in neutrinoless double beta decay, Phys. Rev. D 90 (2014) 096010 [arXiv:1408.6077] [INSPIRE].

  91. [91]

    DUNE collaboration, R. Acciarri et al., Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE), arXiv:1512.06148 [INSPIRE].

  92. [92]

    DUNE collaboration, L. Whitehead, on behalf of the, Sensitivity of the DUNE experiment to CP violation, in TAUP 2017, (2017).

  93. [93]

    T. Spadaro, NA62++, in Physics Beyond Collider workshop , (2017).

  94. [94]

    SHiP collaboration, M. Anelli et al., A facility to Search for Hidden Particles (SHiP) at the CERN SPS, arXiv:1504.04956 [INSPIRE].

  95. [95]

    S. Alekhin et al., A facility to search for hidden particles at the CERN SPS: the SHiP physics case, Rept. Prog. Phys. 79 (2016) 124201 [arXiv:1504.04855] [INSPIRE].

    ADS  Article  Google Scholar 

  96. [96]

    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].

  97. [97]

    R. Abela et al., Search for an admixture of heavy neutrino in pion decay, Phys. Lett. B 105 (1981) 263 [Erratum ibid. B 106 (1981) 513] [INSPIRE].

  98. [98]

    D.I. Britton et al., Measurement of the π +e + neutrino branching ratio, Phys. Rev. Lett. 68 (1992) 3000 [INSPIRE].

  99. [99]

    T. Yamazaki et al., Search for heavy neutrinos in kaon decay, Conf. Proc. C 840719 (1984) 262 [INSPIRE].

  100. [100]

    DELPHI collaboration, P. Abreu et al., Search for neutral heavy leptons produced in Z decays, Z. Phys. C 74 (1997) 57 [Erratum ibid. C 75 (1997) 580] [INSPIRE].

  101. [101]

    LHCb collaboration, Search for massive long-lived particles decaying semileptonically in the LHCb detector, Eur. Phys. J. C 77 (2017) 224 [arXiv:1612.00945] [INSPIRE].

  102. [102]

    CMS collaboration, Search for heavy neutral leptons in events with three charged leptons in proton-proton collisions at \( \sqrt{s}=13 \) TeV, Phys. Rev. Lett. 120 (2018) 221801 [arXiv:1802.02965] [INSPIRE].

  103. [103]

    NA62 collaboration, G. Lanfranchi, Search for hidden sector particles at NA62, PoS(EPS-HEP2017)301 [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jan Hajer.

Additional information

ArXiv ePrint: 1801.04207

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Drewes, M., Hajer, J., Klaric, J. et al. NA62 sensitivity to heavy neutral leptons in the low scale seesaw model. J. High Energ. Phys. 2018, 105 (2018). https://doi.org/10.1007/JHEP07(2018)105

Download citation

Keywords

  • Phenomenological Models