Energy dependence and fluctuations of anisotropic flow in Pb-Pb collisions at \( \sqrt{s_{\mathrm{NN}}}=5.02 \) and 2.76 TeV

Abstract

Measurements of anisotropic flow coefficients with two- and multi-particle cumulants for inclusive charged particles in Pb-Pb collisions at \( \sqrt{s_{\mathrm{NN}}}=5.02 \) and 2.76 TeV are reported in the pseudorapidity range |η| < 0.8 and transverse momentum 0.2 < pT < 50 GeV/c. The full data sample collected by the ALICE detector in 2015 (2010), corresponding to an integrated luminosity of 12.7 (2.0) μb−1 in the centrality range 0-80%, is analysed. Flow coefficients up to the sixth flow harmonic (v6) are reported and a detailed comparison among results at the two energies is carried out. The pT dependence of anisotropic flow coefficients and its evolution with respect to centrality and harmonic number n are investigated. An approximate power-law scaling of the form vn(pT) ∼ p n/3T is observed for all flow harmonics at low pT (0.2 < pT < 3 GeV/c). At the same time, the ratios vn/v n/ m m are observed to be essentially independent of pT for most centralities up to about pT = 10 GeV/c. Analysing the differences among higher-order cumulants of elliptic flow (v2), which have different sensitivities to flow fluctuations, a measurement of the standardised skewness of the event-by-event v2 distribution P(v2) is reported and constraints on its higher moments are provided. The Elliptic Power distribution is used to parametrise P(v2), extracting its parameters from fits to cumulants. The measurements are compared to different model predictions in order to discriminate among initial-state models and to constrain the temperature dependence of the shear viscosity to entropy-density ratio.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    J.-Y. Ollitrault, Anisotropy as a signature of transverse collective flow, Phys. Rev. D 46 (1992) 229 [INSPIRE].

  2. [2]

    S.A. Voloshin, A.M. Poskanzer and and R. Snellings, Collective phenomena in non-central nuclear collisions, Landolt-Bornstein 23 (2010) 293 [arXiv:0809.2949].

  3. [3]

    PHOBOS collaboration, B. Alver et al., System size, energy, pseudorapidity and centrality dependence of elliptic flow, Phys. Rev. Lett. 98 (2007) 242302 [nucl-ex/0610037] [INSPIRE].

  4. [4]

    PHOBOS collaboration, B. Alver et al., Importance of correlations and fluctuations on the initial source eccentricity in high-energy nucleus-nucleus collisions, Phys. Rev. C 77 (2008) 014906 [arXiv:0711.3724] [INSPIRE].

  5. [5]

    B. Alver and G. Roland, Collision geometry fluctuations and triangular flow in heavy-ion collisions, Phys. Rev. C 81 (2010) 054905 [Erratum ibid. C 82 (2010) 039903] [arXiv:1003.0194] [INSPIRE].

  6. [6]

    ALICE collaboration, Higher harmonic anisotropic flow measurements of charged particles in Pb-Pb collisions at \( \sqrt{s_{\mathrm{NN}}}=2.76 \) TeV, Phys. Rev. Lett. 107 (2011) 032301 [arXiv:1105.3865] [INSPIRE].

  7. [7]

    ATLAS collaboration, Measurement of the azimuthal anisotropy for charged particle production in \( \sqrt{s_{\mathrm{NN}}}=2.76 \) TeV lead-lead collisions with the ATLAS detector, Phys. Rev. C 86 (2012) 014907 [arXiv:1203.3087] [INSPIRE].

  8. [8]

    CMS collaboration, Measurement of higher-order harmonic azimuthal anisotropy in Pb-Pb collisions at \( \sqrt{s_{\mathrm{NN}}}=2.76 \) TeV, Phys. Rev. C 89 (2014) 044906 [arXiv:1310.8651] [INSPIRE].

  9. [9]

    M. Luzum and P. Romatschke, Conformal relativistic viscous hydrodynamics: applications to RHIC results at \( \sqrt{s_{\mathrm{NN}}}=200 \) GeV, Phys. Rev. C 78 (2008) 034915 [Erratum ibid. C 79 (2009) 039903] [arXiv:0804.4015] [INSPIRE].

  10. [10]

    S. Voloshin and Y. Zhang, Flow study in relativistic nuclear collisions by Fourier expansion of Azimuthal particle distributions, Z. Phys. C 70 (1996) 665 [hep-ph/9407282] [INSPIRE].

  11. [11]

    T. Hirano et al., Hadronic dissipative effects on elliptic flow in ultrarelativistic heavy-ion collisions, Phys. Lett. B 636 (2006) 299 [nucl-th/0511046] [INSPIRE].

  12. [12]

    P. Romatschke, New developments in relativistic viscous hydrodynamics, Int. J. Mod. Phys. E 19 (2010) 1 [arXiv:0902.3663] [INSPIRE].

    ADS  Article  Google Scholar 

  13. [13]

    C. Shen, U. Heinz, P. Huovinen and H. Song, Systematic parameter study of hadron spectra and elliptic flow from viscous hydrodynamic simulations of Au+Au collisions at \( \sqrt{s_{\mathrm{NN}}}=200 \) GeV, Phys. Rev. C 82 (2010) 054904 [arXiv:1010.1856] [INSPIRE].

    ADS  Google Scholar 

  14. [14]

    S. Ryu et al., Importance of the bulk viscosity of QCD in ultrarelativistic heavy-ion collisions, Phys. Rev. Lett. 115 (2015) 132301 [arXiv:1502.01675] [INSPIRE].

    ADS  Article  Google Scholar 

  15. [15]

    S. Pratt, E. Sangaline, P. Sorensen and H. Wang, Constraining the eq. of state of super-hadronic matter from heavy-ion collisions, Phys. Rev. Lett. 114 (2015) 202301 [arXiv:1501.04042] [INSPIRE].

  16. [16]

    J.E. Bernhard, J.S. Moreland, S.A. Bass, J. Liu and U. Heinz, Applying Bayesian parameter estimation to relativistic heavy-ion collisions: simultaneous characterization of the initial state and quark-gluon plasma medium, Phys. Rev. C 94 (2016) 024907 [arXiv:1605.03954] [INSPIRE].

    ADS  Google Scholar 

  17. [17]

    J. Auvinen, J.E. Bernhard, S.A. Bass and I. Karpenko, Investigating the collision energy dependence of η/s in the beam energy scan at the BNL Relativistic Heavy Ion Collider using Bayesian statistics, Phys. Rev. C 97 (2018) 044905 [arXiv:1706.03666] [INSPIRE].

    ADS  Google Scholar 

  18. [18]

    H. Niemi, K.J. Eskola, R. Paatelainen and K. Tuominen, Predictions for 5.023 TeV Pb+Pb collisions at the CERN Large Hadron Collider, Phys. Rev. C 93 (2016) 014912 [arXiv:1511.04296] [INSPIRE].

  19. [19]

    J. Noronha-Hostler, M. Luzum and J.-Y. Ollitrault, Hydrodynamic predictions for 5.02 TeV Pb-Pb collisions, Phys. Rev. C 93 (2016) 034912 [arXiv:1511.06289] [INSPIRE].

  20. [20]

    F.G. Gardim, F. Grassi, M. Luzum and J.-Y. Ollitrault, Mapping the hydrodynamic response to the initial geometry in heavy-ion collisions, Phys. Rev. C 85 (2012) 024908 [arXiv:1111.6538] [INSPIRE].

    ADS  Google Scholar 

  21. [21]

    STAR collaboration, G. Agakishiev et al., Energy and system-size dependence of two- and four-particle v 2 measurements in heavy-ion collisions at RHIC and their implications on flow fluctuations and nonflow, Phys. Rev. C 86 (2012) 014904 [arXiv:1111.5637] [INSPIRE].

  22. [22]

    PHOBOS collaboration, B. Alver et al., Non-flow correlations and elliptic flow fluctuations in gold-gold collisions at \( \sqrt{s_{\mathrm{NN}}}=200 \) GeV, Phys. Rev. C 81 (2010) 034915 [arXiv:1002.0534] [INSPIRE].

  23. [23]

    PHOBOS collaboration, B. Alver et al., Event-by-event fluctuations of azimuthal particle anisotropy in Au+Au collisions at \( \sqrt{s_{NN}}=200 \) GeV, Phys. Rev. Lett. 104 (2010) 142301 [nucl-ex/0702036] [INSPIRE].

  24. [24]

    ALICE collaboration, Elliptic flow of charged particles in Pb-Pb collisions at 2.76 TeV, Phys. Rev. Lett. 105 (2010) 252302 [arXiv:1011.3914] [INSPIRE].

  25. [25]

    S.A. Voloshin, A.M. Poskanzer, A. Tang and G. Wang, Elliptic flow in the Gaussian model of eccentricity fluctuations, Phys. Lett. B 659 (2008) 537 [arXiv:0708.0800] [INSPIRE].

    ADS  Article  Google Scholar 

  26. [26]

    L. Yan and J.-Y. Ollitrault, Universal fluctuation-driven eccentricities in proton-proton, proton-nucleus and nucleus-nucleus collisions, Phys. Rev. Lett. 112 (2014) 082301 [arXiv:1312.6555] [INSPIRE].

    ADS  Article  Google Scholar 

  27. [27]

    L. Yan, J.-Y. Ollitrault and A.M. Poskanzer, Eccentricity distributions in nucleus-nucleus collisions, Phys. Rev. C 90 (2014) 024903 [arXiv:1405.6595] [INSPIRE].

    ADS  Google Scholar 

  28. [28]

    H. Grönqvist, J.-P. Blaizot and J.-Y. Ollitrault, Non-gaussian eccentricity fluctuations, Phys. Rev. C 94 (2016) 034905 [arXiv:1604.07230] [INSPIRE].

    ADS  Google Scholar 

  29. [29]

    ATLAS collaboration, Measurement of flow harmonics with multi-particle cumulants in Pb+Pb collisions at \( \sqrt{s_{\mathrm{NN}}}=2.76 \) TeV with the ATLAS detector, Eur. Phys. J. C 74 (2014) 3157 [arXiv:1408.4342] [INSPIRE].

  30. [30]

    G. Giacalone, L. Yan, J. Noronha-Hostler and J.-Y. Ollitrault, Skewness of elliptic flow fluctuations, Phys. Rev. C 95 (2017) 014913 [arXiv:1608.01823] [INSPIRE].

    ADS  Google Scholar 

  31. [31]

    ALICE collaboration, Multiparticle azimuthal correlations in p-Pb and Pb-Pb collisions at the CERN Large Hadron Collider, Phys. Rev. C 90 (2014) 054901 [arXiv:1406.2474] [INSPIRE].

  32. [32]

    L. Yan, J.-Y. Ollitrault and A.M. Poskanzer, Azimuthal anisotropy distributions in high-energy collisions, Phys. Lett. B 742 (2015) 290 [arXiv:1408.0921] [INSPIRE].

    ADS  Article  Google Scholar 

  33. [33]

    J. Jia and S. Radhakrishnan, Limitation of multiparticle correlations for studying the event-by-event distribution of harmonic flow in heavy-ion collisions, Phys. Rev. C 92 (2015) 024911 [arXiv:1412.4759] [INSPIRE].

    ADS  Google Scholar 

  34. [34]

    M. Gyulassy, I. Vitev and X.N. Wang, High p T azimuthal asymmetry in noncentral A+A at RHIC, Phys. Rev. Lett. 86 (2001) 2537 [nucl-th/0012092] [INSPIRE].

  35. [35]

    X.-N. Wang, Jet quenching and azimuthal anisotropy of large pT spectra in noncentral high-energy heavy ion collisions, Phys. Rev. C 63 (2001) 054902 [nucl-th/0009019] [INSPIRE].

  36. [36]

    E.V. Shuryak, The azimuthal asymmetry at large p T seem to be too large for ajet quenching’, Phys. Rev. C 66 (2002) 027902 [nucl-th/0112042] [INSPIRE].

  37. [37]

    ATLAS collaboration, Measurement of the azimuthal angle dependence of inclusive jet yields in Pb+Pb collisions at \( \sqrt{s_{\mathrm{NN}}}=2.76 \) TeV with the ATLAS detector, Phys. Rev. Lett. 111 (2013) 152301 [arXiv:1306.6469] [INSPIRE].

  38. [38]

    ALICE collaboration, Azimuthal anisotropy of charged jet production in \( \sqrt{s_{\mathrm{NN}}}=2.76 \) TeV Pb-Pb collisions, Phys. Lett. B 753 (2016) 511 [arXiv:1509.07334] [INSPIRE].

  39. [39]

    CMS collaboration, Azimuthal anisotropy of charged particles with transverse momentum up to 100 GeV/c in PbPb collisions at \( \sqrt{s_{\mathrm{NN}}}=5.02 \) TeV, Phys. Lett. B 776 (2018) 195 [arXiv:1702.00630] [INSPIRE].

  40. [40]

    CMS collaboration, Non-Gaussian elliptic-flow fluctuations in PbPb collisions at \( \sqrt{s_{\mathrm{NN}}}=5.02 \) TeV, arXiv:1711.05594 [INSPIRE].

  41. [41]

    ALICE collaboration, Performance of the ALICE experiment at the CERN LHC, Int. J. Mod. Phys. A 29 (2014) 1430044 [arXiv:1402.4476] [INSPIRE].

  42. [42]

    ALICE collaboration, The ALICE experiment at the CERN LHC, 2008 JINST 3 S08002 [INSPIRE].

  43. [43]

    ALICE collaboration, Centrality determination of Pb-Pb collisions at \( \sqrt{s_{NN}}=2.76 \) TeV with ALICE, Phys. Rev. C 88 (2013) 044909 [arXiv:1301.4361] [INSPIRE].

  44. [44]

    A. Bilandzic, R. Snellings and S. Voloshin, Flow analysis with cumulants: direct calculations, Phys. Rev. C 83 (2011) 044913 [arXiv:1010.0233] [INSPIRE].

    ADS  Google Scholar 

  45. [45]

    A. Bilandzic et al., Generic framework for anisotropic flow analyses with multiparticle azimuthal correlations, Phys. Rev. C 89 (2014) 064904 [arXiv:1312.3572] [INSPIRE].

    ADS  Google Scholar 

  46. [46]

    STAR collaboration, C. Adler et al., Elliptic flow from two and four particle correlations in Au+Au collisions at \( \sqrt{s_{\mathrm{NN}}}=130 \) GeV, Phys. Rev. C 66 (2002) 034904 [nucl-ex/0206001] [INSPIRE].

  47. [47]

    M. Luzum and J.-Y. Ollitrault, Eliminating experimental bias in anisotropic-flow measurements of high-energy nuclear collisions, Phys. Rev. C 87 (2013) 044907 [arXiv:1209.2323] [INSPIRE].

    ADS  Google Scholar 

  48. [48]

    R. Barlow, Systematic errors: Facts and fictions, in the proceedings of the Conference on Statistical Techniques in Particle Physics , March 18–22, Durhamm, U.K. (2002), hep-ex/0207026 [INSPIRE].

  49. [49]

    ALICE collaboration, Anisotropic flow of charged particles in Pb-Pb collisions at \( \sqrt{s_{\mathrm{NN}}}=5.02 \) TeV, Phys. Rev. Lett. 116 (2016) 132302 [arXiv:1602.01119] [INSPIRE].

  50. [50]

    STAR collaboration, K.H. Ackermann et al., Elliptic flow in Au + Au collisions at \( \sqrt{s_{\mathrm{NN}}}=130 \) GeV, Phys. Rev. Lett. 86 (2001) 402 [nucl-ex/0009011] [INSPIRE].

  51. [51]

    K.J. Eskola, K. Kajantie, P.V. Ruuskanen and K. Tuominen, Scaling of transverse energies and multiplicities with atomic number and energy in ultrarelativistic nuclear collisions, Nucl. Phys. B 570 (2000) 379 [hep-ph/9909456] [INSPIRE].

  52. [52]

    H. Niemi, K.J. Eskola and R. Paatelainen, Event-by-event fluctuations in a perturbative QCD + saturation + hydrodynamics model: Determining QCD matter shear viscosity in ultrarelativistic heavy-ion collisions, Phys. Rev. C 93 (2016) 024907 [arXiv:1505.02677] [INSPIRE].

    ADS  Google Scholar 

  53. [53]

    N. Borghini and J.-Y. Ollitrault, Momentum spectra, anisotropic flow and ideal fluids, Phys. Lett. B 642 (2006) 227 [nucl-th/0506045] [INSPIRE].

  54. [54]

    B.H. Alver, C. Gombeaud, M. Luzum and J.-Y. Ollitrault, Triangular flow in hydrodynamics and transport theory, Phys. Rev. C 82 (2010) 034913 [arXiv:1007.5469] [INSPIRE].

    ADS  Google Scholar 

  55. [55]

    D. Teaney, The effects of viscosity on spectra, elliptic flow and HBT radii, Phys. Rev. C 68 (2003) 034913 [nucl-th/0301099] [INSPIRE].

  56. [56]

    Z. Qiu and U.W. Heinz, Event-by-event shape and flow fluctuations of relativistic heavy-ion collision fireballs, Phys. Rev. C 84 (2011) 024911 [arXiv:1104.0650] [INSPIRE].

    ADS  Google Scholar 

  57. [57]

    C. Andrés, M. Braun and C. Pajares, Energy loss as the origin of a universal scaling law of the elliptic flow, Eur. Phys. J. A 53 (2017) 41 [arXiv:1609.03927] [INSPIRE].

    ADS  Article  Google Scholar 

  58. [58]

    F.G. Gardim, F. Grassi, M. Luzum and J.-Y. Ollitrault, Breaking of factorization of two-particle correlations in hydrodynamics, Phys. Rev. C 87 (2013) 031901 [arXiv:1211.0989] [INSPIRE].

    ADS  Google Scholar 

  59. [59]

    CMS collaboration, Evidence for transverse momentum and pseudorapidity dependent event plane fluctuations in PbPb and pPb collisions, Phys. Rev. C 92 (2015) 034911 [arXiv:1503.01692] [INSPIRE].

  60. [60]

    J. Bartels, K.J. Golec-Biernat and H. Kowalski, A modification of the saturation model: DGLAP evolution, Phys. Rev. D 66 (2002) 014001 [hep-ph/0203258] [INSPIRE].

  61. [61]

    S. McDonald et al., Phys. Rev. C 95 (2017) 064913 [arXiv:1609.02958] [INSPIRE].

    ADS  Google Scholar 

  62. [62]

    W. Zhao, H.-j. Xu and H. Song, Collective flow in 2.76 A TeV and 5.02 A TeV Pb+Pb collisions, Eur. Phys. J. C 77 (2017) 645 [arXiv:1703.10792] [INSPIRE].

  63. [63]

    Z.-W. Lin et al., A Multi-phase transport model for relativistic heavy ion collisions, Phys. Rev. C 72 (2005) 064901 [nucl-th/0411110] [INSPIRE].

  64. [64]

    J.S. Moreland, J.E. Bernhard and S.A. Bass, Alternative ansatz to wounded nucleon and binary collision scaling in high-energy nuclear collisions, Phys. Rev. C 92 (2015) 011901 [arXiv:1412.4708] [INSPIRE].

    ADS  Google Scholar 

  65. [65]

    S.A. Bass et al., Microscopic models for ultrarelativistic heavy ion collisions, Prog. Part. Nucl. Phys. 41 (1998) 255 [nucl-th/9803035] [INSPIRE].

  66. [66]

    B. Betz et al., Cumulants and nonlinear response of high p T harmonic flow at \( \sqrt{s_{\mathrm{NN}}}=5.02 \) TeV, Phys. Rev. C 95 (2017) 044901 [arXiv:1609.05171] [INSPIRE].

  67. [67]

    J. Noronha-Hostler et al., Bulk viscosity effects in event-by-event relativistic hydrodynamics, Phys. Rev. C 88 (2013) 044916 [arXiv:1305.1981] [INSPIRE].

    ADS  Google Scholar 

  68. [68]

    B. Betz, M. Gyulassy and G. Torrieri, Fourier harmonics of high-p T particles probing the fluctuating intitial condition geometries in heavy-ion collisions, Phys. Rev. C 84 (2011) 024913 [arXiv:1102.5416] [INSPIRE].

    ADS  Google Scholar 

  69. [69]

    R.J. Fries, V. Greco, and P. Sorensen, Coalescence models for hadron formation from quark gluon plasma, Ann. Rev. Nucl. Part. Sci. 58 (2008) 177 [arXiv:0807.4939].

    ADS  Article  Google Scholar 

  70. [70]

    ATLAS collaboration, Measurement of the distributions of event-by-event flow harmonics in lead-lead collisions at = 2.76 TeV with the ATLAS detector at the LHC, JHEP 11 (2013) 183 [arXiv:1305.2942] [INSPIRE].

  71. [71]

    ALICE collaboration, Event shape engineering for inclusive spectra and elliptic flow in Pb-Pb collisions at \( \sqrt{s_{\mathrm{NN}}}=2.76 \) TeV, Phys. Rev. C 93 (2016) 034916 [arXiv:1507.06194] [INSPIRE].

  72. [72]

    J. Schukraft, A. Timmins and S.A. Voloshin, Ultra-relativistic nuclear collisions: event shape engineering, Phys. Lett. B 719 (2013) 394 [arXiv:1208.4563] [INSPIRE].

    ADS  Article  Google Scholar 

  73. [73]

    ALICE collaboration, Anisotropic flow of charged hadrons, pions and (anti-)protons measured at high transverse momentum in Pb-Pb collisions at \( \sqrt{s_{\mathrm{NN}}}=2.76 \) TeV, Phys. Lett. B 719 (2013) 18 [arXiv:1205.5761] [INSPIRE].

  74. [74]

    STAR collaboration, J. Adams et al., Azimuthal anisotropy at RHIC: the first and fourth harmonics, Phys. Rev. Lett. 92 (2004) 062301 [nucl-ex/0310029] [INSPIRE].

  75. [75]

    PHENIX collaboration, A. Adare et al., Elliptic and hexadecapole flow of charged hadrons in Au+Au collisions at \( \sqrt{s_{\mathrm{NN}}}=200 \) GeV, Phys. Rev. Lett. 105 (2010) 062301 [arXiv:1003.5586] [INSPIRE].

  76. [76]

    C. Gombeaud and J.-Y. Ollitrault, Effects of flow fluctuations and partial thermalization on v(4), Phys. Rev. C 81 (2010) 014901 [arXiv:0907.4664] [INSPIRE].

    ADS  Google Scholar 

  77. [77]

    P.F. Kolb, L.-W. Chen, V. Greco and C.M. Ko, Momentum anisotropies in the quark coalescence model, Phys. Rev. C 69 (2004) 051901 [nucl-th/0402049] [INSPIRE].

  78. [78]

    P. Liu and R.A. Lacey, Acoustic scaling of linear and mode-coupled anisotropic flow; implications for precision extraction of the specific shear viscosity, arXiv:1802.06595 [INSPIRE].

  79. [79]

    R.A. Lacey, A. Taranenko, N.N. Ajitanand and J.M. Alexander, Scaling of the higher-order flow harmonics: implications for initial-eccentricity models and theviscous horizon’, arXiv:1105.3782 [INSPIRE].

  80. [80]

    B. Alver, M. Baker, C. Loizides and P. Steinberg, The PHOBOS glauber Monte Carlo, arXiv:0805.4411 [INSPIRE].

  81. [81]

    J. Noronha-Hostler, L. Yan, F.G. Gardim and J.-Y. Ollitrault, Linear and cubic response to the initial eccentricity in heavy-ion collisions, Phys. Rev. C 93 (2016) 014909 [arXiv:1511.03896] [INSPIRE].

    ADS  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Affiliations

Authors