Evaluating ‘elliptic’ master integrals at special kinematic values: using differential equations and their solutions via expansions near singular points

  • Roman N. Lee
  • Alexander V. Smirnov
  • Vladimir A. Smirnov
Open Access
Regular Article - Theoretical Physics


This is a sequel of our previous paper where we described an algorithm to find a solution of differential equations for master integrals in the form of an ϵ-expansion series with numerical coefficients. The algorithm is based on using generalized power series expansions near singular points of the differential system, solving difference equations for the corresponding coefficients in these expansions and using matching to connect series expansions at two neighboring points. Here we use our algorithm and the corresponding code for our example of four-loop generalized sunset diagrams with three massive and tw massless propagators, in order to obtain new analytical results. We analytically evaluate the master integrals at threshold, p2 = 9m2, in an expansion in ϵ up to ϵ1. With the help of our code, we obtain numerical results for the threshold master integrals in an ϵ-expansion with the accuracy of 6000 digits and then use the PSLQ algorithm to arrive at analytical values. Our basis of constants is build from bases of multiple polylogarithm values at sixth roots of unity.


Perturbative QCD Scattering Amplitudes 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    E. Remiddi and J.A.M. Vermaseren, Harmonic polylogarithms, Int. J. Mod. Phys. A 15 (2000) 725 [hep-ph/9905237] [INSPIRE].
  2. [2]
    A.B. Goncharov, Multiple polylogarithms, cyclotomy and modular complexes, Math. Res. Lett. 5 (1998) 497 [arXiv:1105.2076] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    D. Maître, HPL, a mathematica implementation of the harmonic polylogarithms, Comput. Phys. Commun. 174 (2006) 222 [hep-ph/0507152] [INSPIRE].
  4. [4]
    J. Vollinga and S. Weinzierl, Numerical evaluation of multiple polylogarithms, Comput. Phys. Commun. 167 (2005) 177 [hep-ph/0410259] [INSPIRE].
  5. [5]
    C.W. Bauer, A. Frink and R. Kreckel, Introduction to the GiNaC framework for symbolic computation within the C++ programming language, J. Symb. Comput. 33 (2000) 1 [cs/0004015] [INSPIRE].
  6. [6]
    A.V. Kotikov, Differential equations method: New technique for massive Feynman diagrams calculation, Phys. Lett. B 254 (1991) 158 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  7. [7]
    A.V. Kotikov, Differential equation method: The Calculation of N point Feynman diagrams, Phys. Lett. B 267 (1991) 123 [Erratum ibid. B 295 (1992) 409] [INSPIRE].
  8. [8]
    E. Remiddi, Differential equations for Feynman graph amplitudes, Nuovo Cim. A 110 (1997) 1435 [hep-th/9711188] [INSPIRE].
  9. [9]
    T. Gehrmann and E. Remiddi, Differential equations for two loop four point functions, Nucl. Phys. B 580 (2000) 485 [hep-ph/9912329] [INSPIRE].
  10. [10]
    T. Gehrmann and E. Remiddi, Two loop master integrals for γ → 3 jets: The Planar topologies, Nucl. Phys. B 601 (2001) 248 [hep-ph/0008287] [INSPIRE].
  11. [11]
    T. Gehrmann and E. Remiddi, Two loop master integrals for γ → 3 jets: The Nonplanar topologies, Nucl. Phys. B 601 (2001) 287 [hep-ph/0101124] [INSPIRE].
  12. [12]
    J.M. Henn, Multiloop integrals in dimensional regularization made simple, Phys. Rev. Lett. 110 (2013) 251601 [arXiv:1304.1806] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    R.N. Lee, Reducing differential equations for multiloop master integrals, JHEP 04 (2015) 108 [arXiv:1411.0911] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    O. Gituliar and V. Magerya, Fuchsia and master integrals for splitting functions from differential equations in QCD, PoS(LL2016)030 [arXiv:1607.00759] [INSPIRE].
  15. [15]
    O. Gituliar and V. Magerya, Fuchsia: a tool for reducing differential equations for Feynman master integrals to epsilon form, Comput. Phys. Commun. 219 (2017) 329 [arXiv:1701.04269] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  16. [16]
    M. Prausa, epsilon: A tool to find a canonical basis of master integrals, Comput. Phys. Commun. 219 (2017) 361 [arXiv:1701.00725] [INSPIRE].
  17. [17]
    C. Meyer, Transforming differential equations of multi-loop Feynman integrals into canonical form, JHEP 04 (2017) 006 [arXiv:1611.01087] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  18. [18]
    C. Meyer, Algorithmic transformation of multi-loop master integrals to a canonical basis with CANONICA, Comput. Phys. Commun. 222 (2018) 295 [arXiv:1705.06252] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    R.N. Lee and A.A. Pomeransky, Normalized Fuchsian form on Riemann sphere and differential equations for multiloop integrals, arXiv:1707.07856 [INSPIRE].
  20. [20]
    U. Aglietti, R. Bonciani, L. Grassi and E. Remiddi, The Two loop crossed ladder vertex diagram with two massive exchanges, Nucl. Phys. B 789 (2008) 45 [arXiv:0705.2616] [INSPIRE].
  21. [21]
    R. Bonciani, V. Del Duca, H. Frellesvig, J.M. Henn, F. Moriello and V.A. Smirnov, Two-loop planar master integrals for Higgs→ 3 partons with full heavy-quark mass dependence, JHEP 12 (2016) 096 [arXiv:1609.06685] [INSPIRE].
  22. [22]
    A. Primo and L. Tancredi, On the maximal cut of Feynman integrals and the solution of their differential equations, Nucl. Phys. B 916 (2017) 94 [arXiv:1610.08397] [INSPIRE].
  23. [23]
    A. Primo and L. Tancredi, Maximal cuts and differential equations for Feynman integrals. An application to the three-loop massive banana graph, Nucl. Phys. B 921 (2017) 316 [arXiv:1704.05465] [INSPIRE].
  24. [24]
    L. Adams, C. Bogner, A. Schweitzer and S. Weinzierl, The kite integral to all orders in terms of elliptic polylogarithms, J. Math. Phys. 57 (2016) 122302 [arXiv:1607.01571] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. [25]
    L. Adams and S. Weinzierl, Feynman integrals and iterated integrals of modular forms, Commun. Num. Theor. Phys. 12 (2018) 193 [arXiv:1704.08895] [INSPIRE].CrossRefzbMATHGoogle Scholar
  26. [26]
    L. Adams and S. Weinzierl, The ε-form of the differential equations for Feynman integrals in the elliptic case, Phys. Lett. B 781 (2018) 270 [arXiv:1802.05020] [INSPIRE].
  27. [27]
    E. Remiddi and L. Tancredi, An Elliptic Generalization of Multiple Polylogarithms, Nucl. Phys. B 925 (2017) 212 [arXiv:1709.03622] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  28. [28]
    J. Ablinger et al., Iterated Elliptic and Hypergeometric Integrals for Feynman Diagrams, J. Math. Phys. 59 (2018) 062305 [arXiv:1706.01299] [INSPIRE].
  29. [29]
    M. Hidding and F. Moriello, All orders structure and efficient computation of linearly reducible elliptic Feynman integrals, arXiv:1712.04441 [INSPIRE].
  30. [30]
    J. Broedel, C. Duhr, F. Dulat and L. Tancredi, Elliptic polylogarithms and iterated integrals on elliptic curves. Part I: general formalism, JHEP 05 (2018) 093 [arXiv:1712.07089] [INSPIRE].
  31. [31]
    J. Broedel, C. Duhr, F. Dulat and L. Tancredi, Elliptic polylogarithms and iterated integrals on elliptic curves II: an application to the sunrise integral, Phys. Rev. D 97 (2018) 116009 [arXiv:1712.07095] [INSPIRE].
  32. [32]
    J. Broedel, C. Duhr, F. Dulat, B. Penante and L. Tancredi, Elliptic symbol calculus: from elliptic polylogarithms to iterated integrals of Eisenstein series, arXiv:1803.10256 [INSPIRE].
  33. [33]
    R.N. Lee, A.V. Smirnov and V.A. Smirnov, Solving differential equations for Feynman integrals by expansions near singular points, JHEP 03 (2018) 008 [arXiv:1709.07525] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  34. [34]
    H.R.P. Ferguson, D.H. Bailey and S. Arno, Analysis of PSLQ, an integer relation finding algorithm, Math. Comput. 68 (1999) 351.ADSMathSciNetCrossRefzbMATHGoogle Scholar
  35. [35]
    J.M. Henn, A.V. Smirnov and V.A. Smirnov, Evaluating Multiple Polylogarithm Values at Sixth Roots of Unity up to Weight Six, Nucl. Phys. B 919 (2017) 315 [arXiv:1512.08389] [INSPIRE].
  36. [36]
    M. Czakon, Tops from Light Quarks: Full Mass Dependence at Two-Loops in QCD, Phys. Lett. B 664 (2008) 307 [arXiv:0803.1400] [INSPIRE].
  37. [37]
    P. Bärnreuther, M. Czakon and P. Fiedler, Virtual amplitudes and threshold behaviour of hadronic top-quark pair-production cross sections, JHEP 02 (2014) 078 [arXiv:1312.6279] [INSPIRE].CrossRefGoogle Scholar
  38. [38]
    S. Pozzorini and E. Remiddi, Precise numerical evaluation of the two loop sunrise graph master integrals in the equal mass case, Comput. Phys. Commun. 175 (2006) 381 [hep-ph/0505041] [INSPIRE].
  39. [39]
    B.A. Kniehl, A.F. Pikelner and O.L. Veretin, Three-loop massive tadpoles and polylogarithms through weight six, JHEP 08 (2017) 024 [arXiv:1705.05136] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  40. [40]
    R. Mueller and D.G. Öztürk, On the computation of finite bottom-quark mass effects in Higgs boson production, JHEP 08 (2016) 055 [arXiv:1512.08570] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    K. Melnikov, L. Tancredi and C. Wever, Two-loop ggHg amplitude mediated by a nearly massless quark, JHEP 11 (2016) 104 [arXiv:1610.03747] [INSPIRE].
  42. [42]
    A.V. Smirnov, Algorithm FIRE — Feynman Integral REduction, JHEP 10 (2008) 107 [arXiv:0807.3243] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  43. [43]
    A.V. Smirnov and V.A. Smirnov, FIRE4, LiteRed and accompanying tools to solve integration by parts relations, Comput. Phys. Commun. 184 (2013) 2820 [arXiv:1302.5885] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  44. [44]
    A.V. Smirnov, FIRE5: a C++ implementation of Feynman Integral REduction, Comput. Phys. Commun. 189 (2015) 182 [arXiv:1408.2372] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  45. [45]
    R.N. Lee, Presenting LiteRed: a tool for the Loop InTEgrals REDuction, arXiv:1212.2685 [INSPIRE].
  46. [46]
    R.N. Lee, LiteRed 1.4: a powerful tool for reduction of multiloop integrals, J. Phys. Conf. Ser. 523 (2014) 012059 [arXiv:1310.1145] [INSPIRE].
  47. [47]
    R.N. Lee and A.A. Pomeransky, Critical points and number of master integrals, JHEP 11 (2013) 165 [arXiv:1308.6676] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  48. [48]
    A.V. Smirnov, FIESTA4: Optimized Feynman integral calculations with GPU support, Comput. Phys. Commun. 204 (2016) 189 [arXiv:1511.03614] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  49. [49]
    P. Marquard, A.V. Smirnov, V.A. Smirnov and M. Steinhauser, Quark Mass Relations to Four-Loop Order in Perturbative QCD, Phys. Rev. Lett. 114 (2015) 142002 [arXiv:1502.01030] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    P. Marquard, A.V. Smirnov, V.A. Smirnov, M. Steinhauser and D. Wellmann, \( \overline{\mathrm{MS}} \) -on-shell quark mass relation up to four loops in QCD and a general SU(N) gauge group, Phys. Rev. D 94 (2016) 074025 [arXiv:1606.06754] [INSPIRE].
  51. [51]
    K.G. Chetyrkin, Operator Expansions in the Minimal Subtraction Scheme. 1: The Gluing Method, Theor. Math. Phys. 75 (1988) 346 [INSPIRE].
  52. [52]
    K.G. Chetyrkin, Operator Expansions in the Minimal Subtraction Scheme. 2: Explicit Formulas for Coefficient Functions, Theor. Math. Phys. 76 (1988) 809 [INSPIRE].
  53. [53]
    V.A. Smirnov, Asymptotic expansions in limits of large momenta and masses, Commun. Math. Phys. 134 (1990) 109 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  54. [54]
    V.A. Smirnov, Applied asymptotic expansions in momenta and masses, Springer Tracts Mod. Phys. 177 (2002) 1 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  55. [55]
    F.A. Berends, A.I. Davydychev and N.I. Ussyukina, Threshold and pseudothreshold values of the sunset diagram, Phys. Lett. B 426 (1998) 95 [hep-ph/9712209] [INSPIRE].
  56. [56]
    A.I. Davydychev and V.A. Smirnov, Threshold expansion of the sunset diagram, Nucl. Phys. B 554 (1999) 391 [hep-ph/9903328] [INSPIRE].
  57. [57]
    J. Fleischer and M.Yu. Kalmykov, Single mass scale diagrams: Construction of a basis for the \( \epsilon \) -expansion, Phys. Lett. B 470 (1999) 168 [hep-ph/9910223] [INSPIRE].
  58. [58]
    A.I. Davydychev and M.Yu. Kalmykov, New results for the \( \epsilon \) -expansion of certain one, two and three loop Feynman diagrams, Nucl. Phys. B 605 (2001) 266 [hep-th/0012189] [INSPIRE].
  59. [59]
    M.Yu. Kalmykov and B.A. Kniehl, ’Sixth root of unity’ and Feynman diagrams: Hypergeometric function approach point of view, Nucl. Phys. Proc. Suppl. 205-206 (2010) 129 [arXiv:1007.2373] [INSPIRE].
  60. [60]
    D.J. Broadhurst, Massive three-loop Feynman diagrams reducible to SC* primitives of algebras of the sixth root of unity, Eur. Phys. J. C 8 (1999) 311 [hep-th/9803091] [INSPIRE].
  61. [61]
    F. Moriello, Linearization and symmetrization of generalized harmonic polylogarithms, Ph.D. Thesis (2013).Google Scholar
  62. [62]
    R.N. Lee, A.V. Smirnov and V.A. Smirnov, Master Integrals for Four-Loop Massless Propagators up to Transcendentality Weight Twelve, Nucl. Phys. B 856 (2012) 95 [arXiv:1108.0732] [INSPIRE].
  63. [63]
    M. Czakon, The Four-loop QCD β-function and anomalous dimensions, Nucl. Phys. B 710 (2005) 485 [hep-ph/0411261] [INSPIRE].
  64. [64]
    Y. Schröder and A. Vuorinen, High-precision \( \epsilon \) -expansions of single-mass-scale four-loop vacuum bubbles, JHEP 06 (2005) 051 [hep-ph/0503209] [INSPIRE].

Copyright information

© The Author(s) 2018

Authors and Affiliations

  • Roman N. Lee
    • 1
  • Alexander V. Smirnov
    • 2
    • 4
  • Vladimir A. Smirnov
    • 3
  1. 1.Budker Institute of Nuclear PhysicsNovosibirskRussia
  2. 2.Research Computing CenterMoscow State UniversityMoscowRussia
  3. 3.Skobeltsyn Institute of Nuclear Physics of Moscow State UniversityMoscowRussia
  4. 4.Institut für Theoretische Teilchenphysik, KITKarlsruheGermany

Personalised recommendations