Constraining anomalous gluon self-interactions at the LHC: a reappraisal

  • Valentin Hirschi
  • Fabio Maltoni
  • Ioannis Tsinikos
  • Eleni Vryonidou
Open Access
Regular Article - Theoretical Physics


Anomalous self-interactions of non-abelian gauge fields can be described by higher dimensional operators featuring gauge-invariant combinations of the field strengths. In the case of QCD, the gluon self-interactions start to be modified at dimension six by operators of the type GGG, with G the gluon field strength tensor, possibly leading to deviations in all observables and measurements that probe strong interactions at very small distances. In this work we consider the sensitivity to the triple gluon operator of a series of observables at the LHC in di-jet, three- and multi-jet final states and heavy-quark production. We critically re-examine the robustness of long-standing as well as more recent proposals addressing issues such as the validity of the EFT expansion and the impact of higher order QCD corrections. Our results support the conclusion that multi-jet observables can reliably bound these anomalous interactions to the level that their impact on other key observables at the LHC, involving for example top quark and Higgs production, can be safely neglected. We also highlight the potential of using previously suggested angular observables in three-jet events at the LHC to further constrain these interactions.


Effective Field Theories Perturbative QCD 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    S. Weinberg, Phenomenological Lagrangians, Physica A 96 (1979) 327 [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    W. Buchmüller and D. Wyler, Effective Lagrangian Analysis of New Interactions and Flavor Conservation, Nucl. Phys. B 268 (1986) 621 [INSPIRE].
  3. [3]
    ATLAS collaboration, Search for new phenomena in dijet events using 37 fb −1 of pp collision data collected at \( \sqrt{s}=13 \) TeV with the ATLAS detector, Phys. Rev. D 96 (2017) 052004 [arXiv:1703.09127] [INSPIRE].
  4. [4]
    CMS collaboration, Search for new physics with dijet angular distributions in proton-proton collisions at \( \sqrt{s}=13 \) TeV, JHEP 07 (2017) 013 [arXiv:1703.09986] [INSPIRE].
  5. [5]
    P.L. Cho and E.H. Simmons, Searching for G3 in tt production, Phys. Rev. D 51 (1995) 2360 [hep-ph/9408206] [INSPIRE].
  6. [6]
    S. Weinberg, Larger Higgs Exchange Terms in the Neutron Electric Dipole Moment, Phys. Rev. Lett. 63 (1989) 2333 [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    W. Dekens and J. de Vries, Renormalization Group Running of Dimension-Six Sources of Parity and Time-Reversal Violation, JHEP 05 (2013) 149 [arXiv:1303.3156] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  8. [8]
    A. Buckley et al., Constraining top quark effective theory in the LHC Run II era, JHEP 04 (2016) 015 [arXiv:1512.03360] [INSPIRE].ADSGoogle Scholar
  9. [9]
    E.H. Simmons, Dimension-six Gluon Operators as Probes of New Physics, Phys. Lett. B 226 (1989) 132 [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    L.J. Dixon and Y. Shadmi, Testing gluon selfinteractions in three jet events at hadron colliders, Nucl. Phys. B 423 (1994) 3 [Erratum ibid. B 452 (1995) 724] [hep-ph/9312363] [INSPIRE].
  11. [11]
    P.L. Cho and E.H. Simmons, Looking for gluon substructure at the Tevatron, Phys. Lett. B 323 (1994) 401 [hep-ph/9307345] [INSPIRE].
  12. [12]
    CMS collaboration, Search for black holes in high-multiplicity final states in proton-proton collisions at \( \sqrt{s}=13 \) TeV, Phys. Lett. B 774 (2017) 279 [arXiv:1705.01403] [INSPIRE].
  13. [13]
    F. Krauss, S. Kuttimalai and T. Plehn, LHC multijet events as a probe for anomalous dimension-six gluon interactions, Phys. Rev. D 95 (2017) 035024 [arXiv:1611.00767] [INSPIRE].
  14. [14]
    J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    P. Gras et al., Systematics of quark/gluon tagging, JHEP 07 (2017) 091 [arXiv:1704.03878] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    A. Alloul, N.D. Christensen, C. Degrande, C. Duhr and B. Fuks, FeynRules 2.0A complete toolbox for tree-level phenomenology, Comput. Phys. Commun. 185 (2014) 2250 [arXiv:1310.1921] [INSPIRE].
  17. [17]
    C. Degrande, Automatic evaluation of UV and R2 terms for beyond the Standard Model Lagrangians: a proof-of-principle, Comput. Phys. Commun. 197 (2015) 239 [arXiv:1406.3030] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  18. [18]
    C. Degrande, C. Duhr, B. Fuks, D. Grellscheid, O. Mattelaer and T. Reiter, UFOThe Universal FeynRules Output, Comput. Phys. Commun. 183 (2012) 1201 [arXiv:1108.2040] [INSPIRE].
  19. [19]
    V. Hirschi, R. Frederix, S. Frixione, M.V. Garzelli, F. Maltoni and R. Pittau, Automation of one-loop QCD corrections, JHEP 05 (2011) 044 [arXiv:1103.0621] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  20. [20]
    V. Hirschi and O. Mattelaer, Automated event generation for loop-induced processes, JHEP 10 (2015) 146 [arXiv:1507.00020] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  21. [21]
    M.L. Mangano and S.J. Parke, Multiparton amplitudes in gauge theories, Phys. Rept. 200 (1991) 301 [hep-th/0509223] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    L.J. Dixon, A brief introduction to modern amplitude methods, in Proceedings, 2012 European School of High-Energy Physics (ESHEP 2012), La Pommeraye, Anjou, France, June 06-19, 2012, pp. 31-67 (2014) [DOI:] [arXiv:1310.5353] [INSPIRE].
  23. [23]
    S.J. Parke and T.R. Taylor, An Amplitude for n Gluon Scattering, Phys. Rev. Lett. 56 (1986) 2459 [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    Z. Bern and D.A. Kosower, The computation of loop amplitudes in gauge theories, Nucl. Phys. B 379 (1992) 451 [INSPIRE].
  25. [25]
    V. Del Duca, L.J. Dixon and F. Maltoni, New color decompositions for gauge amplitudes at tree and loop level, Nucl. Phys. B 571 (2000) 51 [hep-ph/9910563] [INSPIRE].
  26. [26]
    Z. Bern and D.A. Kosower, Color decomposition of one loop amplitudes in gauge theories, Nucl. Phys. B 362 (1991) 389 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  • Valentin Hirschi
    • 1
  • Fabio Maltoni
    • 2
  • Ioannis Tsinikos
    • 2
    • 3
  • Eleni Vryonidou
    • 4
  1. 1.Institute for Theoretical Physics, ETH ZürichZürichSwitzerland
  2. 2.Centre for Cosmology, Particle Physics and Phenomenology (CP3)Université catholique de LouvainLouvain-la-NeuveBelgium
  3. 3.Physik Department T31, Technische Universität MünchenGarchingGermany
  4. 4.CERN, Theoretical Physics DepartmentGeneva 23Switzerland

Personalised recommendations