Advertisement

Neutrino predictions from generalized CP symmetries of charged leptons

  • Peng Chen
  • Salvador Centelles Chuliá
  • Gui-Jun Ding
  • Rahul Srivastava
  • José W. F. Valle
Open Access
Regular Article - Theoretical Physics

Abstract

We study the implications of generalized CP transformations acting on the mass matrices of charged leptons in a model-independent way. Generalized eμ, e − τ and μ−τ symmetries are considered in detail. In all cases the physical parameters of the lepton mixing matrix, three mixing angles and three CP phases can be expressed in terms of a restricted set of independent “theory parameters” that characterize a given choice of CP transformation. This leads to implications for neutrino oscillations as well as neutrinoless double beta decay experiments.

Keywords

Neutrino Physics CP violation 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    T. Kajita, Nobel Lecture: Discovery of atmospheric neutrino oscillations, Rev. Mod. Phys. 88 (2016)030501 [INSPIRE].
  2. [2]
    A.B. McDonald, Nobel Lecture: The Sudbury Neutrino Observatory: Observation of flavor change for solar neutrinos, Rev. Mod. Phys. 88 (2016) 030502 [INSPIRE].
  3. [3]
    P.F. de Salas, D.V. Forero, C.A. Ternes, M. Tortola and J.W.F. Valle, Status of neutrino oscillations 2018: 3σ hint for normal mass ordering and improved CP sensitivity, Phys. Lett. B 782 (2018) 633 [arXiv:1708.01186] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  4. [4]
    J. Schechter and J.W.F. Valle, Neutrino Masses in SU(2) × U(1) Theories, Phys. Rev. D 22 (1980)2227 [INSPIRE].
  5. [5]
    J. Schechter and J.W.F. Valle, Neutrino Oscillation Thought Experiment, Phys. Rev. D 23 (1981)1666 [INSPIRE].
  6. [6]
    T2K collaboration, K. Abe et al., Combined Analysis of Neutrino and Antineutrino Oscillations at T2K, Phys. Rev. Lett. 118 (2017) 151801 [arXiv:1701.00432] [INSPIRE].
  7. [7]
    NOvA collaboration, P. Adamson et al., Constraints on Oscillation Parameters from ν e Appearance and ν μ Disappearance in NOvA, Phys. Rev. Lett. 118 (2017) 231801 [arXiv:1703.03328] [INSPIRE].
  8. [8]
    K.S. Babu, E. Ma and J.W.F. Valle, Underlying A 4 symmetry for the neutrino mass matrix and the quark mixing matrix, Phys. Lett. B 552 (2003) 207 [hep-ph/0206292] [INSPIRE].
  9. [9]
    G. Altarelli and F. Feruglio, Discrete Flavor Symmetries and Models of Neutrino Mixing, Rev. Mod. Phys. 82 (2010) 2701 [arXiv:1002.0211] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    H. Ishimori, T. Kobayashi, H. Ohki, Y. Shimizu, H. Okada and M. Tanimoto, Non-Abelian Discrete Symmetries in Particle Physics, Prog. Theor. Phys. Suppl. 183 (2010) 1 [arXiv:1003.3552] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  11. [11]
    S. Morisi and J.W.F. Valle, Neutrino masses and mixing: a flavour symmetry roadmap, Fortsch. Phys. 61 (2013) 466 [arXiv:1206.6678] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  12. [12]
    S. Morisi, D.V. Forero, J.C. Romão and J.W.F. Valle, Neutrino mixing with revamped A 4 flavor symmetry, Phys. Rev. D 88 (2013) 016003 [arXiv:1305.6774] [INSPIRE].
  13. [13]
    S.F. King and C. Luhn, Neutrino Mass and Mixing with Discrete Symmetry, Rept. Prog. Phys. 76 (2013) 056201 [arXiv:1301.1340] [INSPIRE].
  14. [14]
    S.F. King, A. Merle, S. Morisi, Y. Shimizu and M. Tanimoto, Neutrino Mass and Mixing: from Theory to Experiment, New J. Phys. 16 (2014) 045018 [arXiv:1402.4271] [INSPIRE].
  15. [15]
    S.F. King, Models of Neutrino Mass, Mixing and CP-violation, J. Phys. G 42 (2015) 123001 [arXiv:1510.02091] [INSPIRE].
  16. [16]
    F. Feruglio, C. Hagedorn and R. Ziegler, Lepton Mixing Parameters from Discrete and CP Symmetries, JHEP 07 (2013) 027 [arXiv:1211.5560] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    M. Holthausen, M. Lindner and M.A. Schmidt, CP and Discrete Flavour Symmetries, JHEP 04 (2013) 122 [arXiv:1211.6953] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    M.-C. Chen, M. Fallbacher, K.T. Mahanthappa, M. Ratz and A. Trautner, CP Violation from Finite Groups, Nucl. Phys. B 883 (2014) 267 [arXiv:1402.0507] [INSPIRE].
  19. [19]
    G.-J. Ding, S.F. King, C. Luhn and A.J. Stuart, Spontaneous CP-violation from vacuum alignment in S 4 models of leptons, JHEP 05 (2013) 084 [arXiv:1303.6180] [INSPIRE].
  20. [20]
    P. Chen, C.-C. Li and G.-J. Ding, Lepton Flavor Mixing and CP Symmetry, Phys. Rev. D 91 (2015)033003 [arXiv:1412.8352] [INSPIRE].
  21. [21]
    L.L. Everett, T. Garon and A.J. Stuart, A Bottom-Up Approach to Lepton Flavor and CP Symmetries, JHEP 04 (2015) 069 [arXiv:1501.04336] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    P. Chen, C.-Y. Yao and G.-J. Ding, Neutrino Mixing from CP Symmetry, Phys. Rev. D 92 (2015)073002 [arXiv:1507.03419] [INSPIRE].
  23. [23]
    P. Chen, G.-J. Ding, F. Gonzalez-Canales and J.W.F. Valle, Generalized μτ reflection symmetry and leptonic CP-violation, Phys. Lett. B 753 (2016) 644 [arXiv:1512.01551] [INSPIRE].
  24. [24]
    P. Chen, G.-J. Ding, F. Gonzalez-Canales and J.W.F. Valle, Classifying CP transformations according to their texture zeros: theory and implications, Phys. Rev. D 94 (2016) 033002 [arXiv:1604.03510] [INSPIRE].
  25. [25]
    G.-J. Ding, S.F. King and A.J. Stuart, Generalised CP and A 4 Family Symmetry, JHEP 12 (2013)006 [arXiv:1307.4212] [INSPIRE].
  26. [26]
    C. Hagedorn, A. Meroni and E. Molinaro, Lepton mixing from Δ(3n 2) and Δ(6n 2) and CP, Nucl. Phys. B 891 (2015) 499 [arXiv:1408.7118] [INSPIRE].
  27. [27]
    G.-J. Ding, S.F. King and T. Neder, Generalised CP and Δ(6n 2) family symmetry in semi-direct models of leptons, JHEP 12 (2014) 007 [arXiv:1409.8005] [INSPIRE].
  28. [28]
    C.-C. Li and G.-J. Ding, Lepton Mixing in A 5 Family Symmetry and Generalized CP, JHEP 05 (2015) 100 [arXiv:1503.03711] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    A. Di Iura, C. Hagedorn and D. Meloni, Lepton mixing from the interplay of the alternating group A 5 and CP, JHEP 08 (2015) 037 [arXiv:1503.04140] [INSPIRE].
  30. [30]
    P. Ballett, S. Pascoli and J. Turner, Mixing angle and phase correlations from A 5 with generalized CP and their prospects for discovery, Phys. Rev. D 92 (2015) 093008 [arXiv:1503.07543] [INSPIRE].
  31. [31]
    G.-J. Ding and S.F. King, Generalized CP and Δ(3n 2) Family Symmetry for Semi-Direct Predictions of the PMNS Matrix, Phys. Rev. D 93 (2016) 025013 [arXiv:1510.03188] [INSPIRE].
  32. [32]
    C.-C. Li, C.-Y. Yao and G.-J. Ding, Lepton Mixing Predictions from Infinite Group Series D 9 n,3 n(1) with Generalized CP, JHEP 05 (2016) 007 [arXiv:1601.06393] [INSPIRE].
  33. [33]
    C.-Y. Yao and G.-J. Ding, CP Symmetry and Lepton Mixing from a Scan of Finite Discrete Groups, Phys. Rev. D 94 (2016) 073006 [arXiv:1606.05610] [INSPIRE].
  34. [34]
    I.P. Ivanov, Radiative neutrino masses from order-4 CP symmetry, JHEP 02 (2018) 025 [arXiv:1712.02101] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    C.-C. Li, J.-N. Lu and G.-J. Ding, Toward a unified interpretation of quark and lepton mixing from flavor and CP symmetries, JHEP 02 (2018) 038 [arXiv:1706.04576] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    P. Ballett, S.F. King, C. Luhn, S. Pascoli and M.A. Schmidt, Testing atmospheric mixing sum rules at precision neutrino facilities, Phys. Rev. D 89 (2014) 016016 [arXiv:1308.4314] [INSPIRE].
  37. [37]
    S.T. Petcov, Predicting the values of the leptonic CP-violation phases in theories with discrete flavour symmetries, Nucl. Phys. B 892 (2015) 400 [arXiv:1405.6006] [INSPIRE].
  38. [38]
    I. Girardi, S.T. Petcov and A.V. Titov, Determining the Dirac CP-violation Phase in the Neutrino Mixing Matrix from Sum Rules, Nucl. Phys. B 894 (2015) 733 [arXiv:1410.8056] [INSPIRE].
  39. [39]
    P.F. Harrison and W.G. Scott, μτ reflection symmetry in lepton mixing and neutrino oscillations, Phys. Lett. B 547 (2002) 219 [hep-ph/0210197] [INSPIRE].
  40. [40]
    W. Grimus and L. Lavoura, A nonstandard CP transformation leading to maximal atmospheric neutrino mixing, Phys. Lett. B 579 (2004) 113 [hep-ph/0305309] [INSPIRE].
  41. [41]
    P.F. Harrison and W.G. Scott, The simplest neutrino mass matrix, Phys. Lett. B 594 (2004) 324 [hep-ph/0403278] [INSPIRE].
  42. [42]
    W. Rodejohann and J.W.F. Valle, Symmetrical Parametrizations of the Lepton Mixing Matrix, Phys. Rev. D 84 (2011) 073011 [arXiv:1108.3484] [INSPIRE].
  43. [43]
    C. Jarlskog, Commutator of the Quark Mass Matrices in the Standard Electroweak Model and a Measure of Maximal CP-violation, Phys. Rev. Lett. 55 (1985) 1039 [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    G.C. Branco, L. Lavoura and M.N. Rebelo, Majorana Neutrinos and CP Violation in the Leptonic Sector, Phys. Lett. B 180 (1986) 264 [INSPIRE].
  45. [45]
    E.E. Jenkins and A.V. Manohar, Rephasing Invariants of Quark and Lepton Mixing Matrices, Nucl. Phys. B 792 (2008) 187 [arXiv:0706.4313] [INSPIRE].
  46. [46]
    G.C. Branco, R.G. Felipe and F.R. Joaquim, Leptonic CP-violation, Rev. Mod. Phys. 84 (2012)515 [arXiv:1111.5332] [INSPIRE].
  47. [47]
    DUNE collaboration, R. Acciarri et al., Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE), arXiv:1601.02984 [INSPIRE].
  48. [48]
    DUNE collaboration, R. Acciarri et al., Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE), arXiv:1512.06148 [INSPIRE].
  49. [49]
    KamLAND-Zen collaboration, A. Gando et al., Search for Majorana Neutrinos near the Inverted Mass Hierarchy Region with KamLAND-Zen, Phys. Rev. Lett. 117 (2016) 082503 [Addendum ibid. 117 (2016) 109903] [arXiv:1605.02889] [INSPIRE].
  50. [50]
    EXO collaboration, J.B. Albert et al., Search for Neutrinoless Double-Beta Decay with the Upgraded EXO-200 Detector, Phys. Rev. Lett. 120 (2018) 072701 [arXiv:1707.08707] [INSPIRE].
  51. [51]
    Planck collaboration, P.A.R. Ade et al., Planck 2015 results. XIII. Cosmological parameters, Astron. Astrophys. 594 (2016) A13 [arXiv:1502.01589] [INSPIRE].

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.College of Information Science and Engineering, Ocean University of ChinaQingdaoChina
  2. 2.AHEP Group, Institut de Física CorpuscularCSIC/Universitat de ValènciaPaternaSpain
  3. 3.Interdisciplinary Center for Theoretical Study and Department of Modern PhysicsUniversity of Science and Technology of ChinaHefeiChina

Personalised recommendations