Next-to-leading order electroweak corrections to off-shell WWW production at the LHC

  • Marek SchönherrEmail author
Open Access
Regular Article - Theoretical Physics


Triboson processes allow for a measurement of the triple and quartic couplings of the Standard Model gauge bosons, which can be used to constrain anomalous gauge couplings. In this paper we calculate the next-to-leading order electroweak corrections to fully off-shell W W +W + production, namely the production of a \( {\ell}_1^{-}{\ell}_2^{+}{\ell}_3^{+}{\overline{\nu}}_{\ell_1}{\nu}_{\ell_2}{\nu}_{\ell_3} \) final state with (i = e, μ), including all triple, double, single and non resonant topologies and interferences of diagrams with all different vector boson (W, Z, γ) intermediate states. We find large cancellations of the electroweak correction to the \( q\overline{q} \)-induced channel, which includes the exchange of virtual electroweak gauge bosons, and photon-induced jet radiation processes. This accidental compensation is found to be strongly phase space and observable dependent. The resulting corrections in a suitably defined fiducial region thus amount to −2.0%, but rise rapidly for other observables.


NLO Computations 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    ATLAS collaboration, Search for triboson W ± W ± W production in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Eur. Phys. J. C 77 (2017) 141 [arXiv:1610.05088] [INSPIRE].
  2. [2]
    A. Lazopoulos, K. Melnikov and F. Petriello, QCD corrections to tri-boson production, Phys. Rev. D 76 (2007) 014001 [hep-ph/0703273] [INSPIRE].
  3. [3]
    T. Binoth, G. Ossola, C.G. Papadopoulos and R. Pittau, NLO QCD corrections to tri-boson production, JHEP 06 (2008) 082 [arXiv:0804.0350] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    F. Campanario, V. Hankele, C. Oleari, S. Prestel and D. Zeppenfeld, QCD corrections to charged triple vector boson production with leptonic decay, Phys. Rev. D 78 (2008) 094012 [arXiv:0809.0790] [INSPIRE].
  5. [5]
    Y.-B. Shen et al., NLO QCD + NLO EW corrections to W ZZ productions with leptonic decays at the LHC, JHEP 10 (2015) 186 [Erratum ibid. 10 (2016) 156] [arXiv:1507.03693] [INSPIRE].
  6. [6]
    Y.-B. Shen et al., NLO QCD and electroweak corrections to WWW production at the LHC, Phys. Rev. D 95 (2017) 073005 [arXiv:1605.00554] [INSPIRE].
  7. [7]
    S. Dittmaier, A. Huss and G. Knippen, Next-to-leading-order QCD and electroweak corrections to WWW production at proton-proton colliders, JHEP 09 (2017) 034 [arXiv:1705.03722] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    R. Frederix et al., The automation of next-to-leading order electroweak calculations, arXiv:1804.10017 [INSPIRE].
  9. [9]
    S. Hoeche et al., Triple vector boson production through Higgs-Strahlung with NLO multijet merging, Phys. Rev. D 89 (2014) 093015 [arXiv:1403.7516] [INSPIRE].
  10. [10]
    T. Gleisberg et al., Event generation with SHERPA 1.1, JHEP 02 (2009) 007 [arXiv:0811.4622] [INSPIRE].
  11. [11]
    E. Bothmann, M. Schönherr and S. Schumann, Reweighting QCD matrix-element and parton-shower calculations, Eur. Phys. J. C 76 (2016) 590 [arXiv:1606.08753] [INSPIRE].
  12. [12]
    S. Actis, A. Denner, L. Hofer, A. Scharf and S. Uccirati, Recursive generation of one-loop amplitudes in the standard model, JHEP 04 (2013) 037 [arXiv:1211.6316] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    S. Actis et al., RECOLA: REcursive Computation of One-Loop Amplitudes, Comput. Phys. Commun. 214 (2017) 140 [arXiv:1605.01090] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  14. [14]
    F. Krauss, R. Kuhn and G. Soff, AMEGIC++ 1.0: a matrix element generator in C++, JHEP 02 (2002) 044 [hep-ph/0109036] [INSPIRE].
  15. [15]
    T. Gleisberg and F. Krauss, Automating dipole subtraction for QCD NLO calculations, Eur. Phys. J. C 53 (2008) 501 [arXiv:0709.2881] [INSPIRE].
  16. [16]
    M. Schönherr, An automated subtraction of NLO EW infrared divergences, Eur. Phys. J. C 78 (2018) 119 [arXiv:1712.07975] [INSPIRE].
  17. [17]
    S. Kallweit, J.M. Lindert, P. Maierhöfer, S. Pozzorini and M. Schönherr, NLO electroweak automation and precise predictions for W+multijet production at the LHC, JHEP 04 (2015) 012 [arXiv:1412.5157] [INSPIRE].CrossRefGoogle Scholar
  18. [18]
    S. Kallweit et al., NLO QCD+EW predictions for V + jets including off-shell vector-boson decays and multijet merging, JHEP 04 (2016) 021 [arXiv:1511.08692] [INSPIRE].ADSGoogle Scholar
  19. [19]
    B. Biedermann et al., Automation of NLO QCD and EW corrections with Sherpa and Recola, Eur. Phys. J. C 77 (2017) 492 [arXiv:1704.05783] [INSPIRE].
  20. [20]
    S. Kallweit, J.M. Lindert, S. Pozzorini and M. Schönherr, NLO QCD+EW predictions for 22ν diboson signatures at the LHC, JHEP 11 (2017) 120 [arXiv:1705.00598] [INSPIRE].
  21. [21]
    M. Chiesa, N. Greiner, M. Schönherr and F. Tramontano, Electroweak corrections to diphoton plus jets, JHEP 10 (2017) 181 [arXiv:1706.09022] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    N. Greiner and M. Schönherr, NLO QCD+EW corrections to diphoton production in association with a vector boson, JHEP 01 (2018) 079 [arXiv:1710.11514] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    C. Gütschow, J.M. Lindert and M. Schönherr, Multi-jet merged top-pair production including electroweak corrections, Eur. Phys. J. C 78 (2018) 317 [arXiv:1803.00950] [INSPIRE].
  24. [24]
    S. Catani and M.H. Seymour, A general algorithm for calculating jet cross-sections in NLO QCD, Nucl. Phys. B 485 (1997) 291 [Erratum ibid. B 510 (1998) 503] [hep-ph/9605323] [INSPIRE].
  25. [25]
    S. Dittmaier, A general approach to photon radiation off fermions, Nucl. Phys. B 565 (2000) 69 [hep-ph/9904440] [INSPIRE].
  26. [26]
    S. Catani, S. Dittmaier, M.H. Seymour and Z. Trócsányi, The dipole formalism for next-to-leading order QCD calculations with massive partons, Nucl. Phys. B 627 (2002) 189 [hep-ph/0201036] [INSPIRE].
  27. [27]
    S. Dittmaier, A. Kabelschacht and T. Kasprzik, Polarized QED splittings of massive fermions and dipole subtraction for non-collinear-safe observables, Nucl. Phys. B 800 (2008) 146 [arXiv:0802.1405] [INSPIRE].
  28. [28]
    A. Denner, S. Dittmaier and L. Hofer, Collier: a Fortran-based Complex One-Loop Library In Extended Regularizations, Comput. Phys. Commun. 212 (2017) 220 [arXiv:1604.06792] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  29. [29]
    M. Schonherr and F. Krauss, Soft photon radiation in particle decays in SHERPA, JHEP 12 (2008) 018 [arXiv:0810.5071] [INSPIRE].
  30. [30]
    A. Denner, S. Dittmaier, M. Roth and L.H. Wieders, Electroweak corrections to charged-current e + e → 4 fermion processes: Technical details and further results, Nucl. Phys. B 724 (2005) 247 [Erratum ibid. B 854 (2012) 504] [hep-ph/0505042] [INSPIRE].
  31. [31]
    A. Denner and J.-N. Lang, The complex-mass scheme and unitarity in perturbative quantum field theory, Eur. Phys. J. C 75 (2015) 377 [arXiv:1406.6280] [INSPIRE].
  32. [32]
    NNPDF collaboration, V. Bertone et al., Illuminating the photon content of the proton within a global PDF analysis, arXiv:1712.07053 [INSPIRE].
  33. [33]
    A. Manohar, P. Nason, G.P. Salam and G. Zanderighi, How bright is the proton? A precise determination of the photon parton distribution function, Phys. Rev. Lett. 117 (2016) 242002 [arXiv:1607.04266] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    A.V. Manohar, P. Nason, G.P. Salam and G. Zanderighi, The photon content of the proton, JHEP 12 (2017) 046 [arXiv:1708.01256] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    A. Buckley et al., LHAPDF6: parton density access in the LHC precision era, Eur. Phys. J. C 75 (2015) 132 [arXiv:1412.7420] [INSPIRE].
  36. [36]
    A. Buckley et al., Rivet user manual, Comput. Phys. Commun. 184 (2013) 2803 [arXiv:1003.0694] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    A. Bierweiler, T. Kasprzik and J.H. Kühn, Vector-boson pair production at the LHC to \( \mathcal{O}\left({\alpha}^3\right) \) accuracy, JHEP 12 (2013) 071 [arXiv:1305.5402] [INSPIRE].

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Theoretical Physics DepartmentCERNGeneva 23Switzerland

Personalised recommendations