Advertisement

On the quantum entropy function in 4d gauged supergravity

Open Access
Regular Article - Theoretical Physics
  • 17 Downloads

Abstract

We analyze BPS black hole attractors in the conformal 4d gauged supergravity formalism and apply the technique known as supergravity localization in order to evaluate Sen’s quantum entropy function [1] in the AdS2×S2 near-horizon geometry. Under certain assumptions, we reduce the exact expression of the functional integral to a finite-dimensional integral for a number of supersymmetric black holes in gauged supergravity with AdS asymptotics subject to a holographic description via a dual field theory. Examples include the asymptotically AdS4×S7 Cacciatori-Klemm black holes [2] in M-theory and the asymptotically AdS5×S5 generalizations of Gutowski-Reall black holes [3] and Benini-Bobev black strings [4] in type IIB, as well as the recently constructed asymptotically AdS4×S6 solutions [5, 6] in massive type IIA. Our results provide an important first step towards a gravitational counterpart to the exact evaluation of supersymmetric partition functions at finite N for the holographically dual field theories in these examples.

Keywords

AdS-CFT Correspondence Black Holes in String Theory Extended Supersymmetry Gauge-gravity correspondence 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    A. Sen, Quantum Entropy Function from AdS 2 /CFT 1 Correspondence, Int. J. Mod. Phys. A 24 (2009) 4225 [arXiv:0809.3304] [INSPIRE].
  2. [2]
    S.L. Cacciatori and D. Klemm, Supersymmetric AdS 4 black holes and attractors, JHEP 01 (2010) 085 [arXiv:0911.4926] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  3. [3]
    J.B. Gutowski and H.S. Reall, Supersymmetric AdS 5 black holes, JHEP 02 (2004) 006 [hep-th/0401042] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    F. Benini and N. Bobev, Two-dimensional SCFTs from wrapped branes and c-extremization, JHEP 06 (2013) 005 [arXiv:1302.4451] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  5. [5]
    A. Guarino and J. Tarrío, BPS black holes from massive IIA on S 6, JHEP 09 (2017) 141 [arXiv:1703.10833] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  6. [6]
    A. Guarino, BPS black hole horizons from massive IIA, JHEP 08 (2017) 100 [arXiv:1706.01823] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  7. [7]
    A. Strominger and C. Vafa, Microscopic origin of the Bekenstein-Hawking entropy, Phys. Lett. B 379 (1996) 99 [hep-th/9601029] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  8. [8]
    J.M. Maldacena, The large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [hep-th/9711200] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  9. [9]
    J.M. Maldacena, G.W. Moore and A. Strominger, Counting BPS black holes in toroidal Type II string theory, hep-th/9903163 [INSPIRE].
  10. [10]
    R. Dijkgraaf, G.W. Moore, E.P. Verlinde and H.L. Verlinde, Elliptic genera of symmetric products and second quantized strings, Commun. Math. Phys. 185 (1997) 197 [hep-th/9608096] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  11. [11]
    F. Denef and G.W. Moore, Split states, entropy enigmas, holes and halos, JHEP 11 (2011) 129 [hep-th/0702146] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  12. [12]
    A. Dabholkar, J. Gomes and S. Murthy, Quantum black holes, localization and the topological string, JHEP 06 (2011) 019 [arXiv:1012.0265] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  13. [13]
    A. Dabholkar, J. Gomes and S. Murthy, Localization & Exact Holography, JHEP 04 (2013) 062 [arXiv:1111.1161] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  14. [14]
    A. Dabholkar, J. Gomes and S. Murthy, Nonperturbative black hole entropy and Kloosterman sums, JHEP 03 (2015) 074 [arXiv:1404.0033] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  15. [15]
    V. Pestun, Localization of gauge theory on a four-sphere and supersymmetric Wilson loops, Commun. Math. Phys. 313 (2012) 71 [arXiv:0712.2824] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  16. [16]
    F. Benini, K. Hristov and A. Zaffaroni, Black hole microstates in AdS 4 from supersymmetric localization, JHEP 05 (2016) 054 [arXiv:1511.04085] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  17. [17]
    F. Benini and A. Zaffaroni, A topologically twisted index for three-dimensional supersymmetric theories, JHEP 07 (2015) 127 [arXiv:1504.03698] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  18. [18]
    O. Aharony, O. Bergman, D.L. Jafferis and J. Maldacena, N = 6 superconformal Chern-Simons-matter theories, M2-branes and their gravity duals, JHEP 10 (2008) 091 [arXiv:0806.1218] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  19. [19]
    S.M. Hosseini and A. Zaffaroni, Large N matrix models for 3d \( \mathcal{N} \) = 2 theories: twisted index, free energy and black holes, JHEP 08 (2016) 064 [arXiv:1604.03122] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  20. [20]
    S.M. Hosseini and N. Mekareeya, Large N topologically twisted index: necklace quivers, dualities and Sasaki-Einstein spaces, JHEP 08 (2016) 089 [arXiv:1604.03397] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  21. [21]
    F. Benini and A. Zaffaroni, Supersymmetric partition functions on Riemann surfaces, Proc. Symp. Pure Math. 96 (2017) 13 [arXiv:1605.06120] [INSPIRE].MathSciNetGoogle Scholar
  22. [22]
    S.M. Hosseini, A. Nedelin and A. Zaffaroni, The Cardy limit of the topologically twisted index and black strings in AdS 5, JHEP 04 (2017) 014 [arXiv:1611.09374] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  23. [23]
    A. Cabo-Bizet, V.I. Giraldo-Rivera and L.A. Pando Zayas, Microstate counting of AdS 4 hyperbolic black hole entropy via the topologically twisted index, JHEP 08 (2017) 023 [arXiv:1701.07893] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  24. [24]
    S.M. Hosseini, K. Hristov and A. Zaffaroni, An extremization principle for the entropy of rotating BPS black holes in AdS 5, JHEP 07 (2017) 106 [arXiv:1705.05383] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  25. [25]
    J.T. Liu, L.A. Pando Zayas, V. Rathee and W. Zhao, Toward Microstate Counting Beyond Large N in Localization and the Dual One-loop Quantum Supergravity, JHEP 01 (2018) 026 [arXiv:1707.04197] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  26. [26]
    I. Jeon and S. Lal, Logarithmic Corrections to Entropy of Magnetically Charged AdS4 Black Holes, Phys. Lett. B 774 (2017) 41 [arXiv:1707.04208] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    F. Azzurli, N. Bobev, P.M. Crichigno, V.S. Min and A. Zaffaroni, A universal counting of black hole microstates in AdS 4, JHEP 02 (2018) 054 [arXiv:1707.04257] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  28. [28]
    S.M. Hosseini, K. Hristov and A. Passias, Holographic microstate counting for AdS 4 black holes in massive IIA supergravity, JHEP 10 (2017) 190 [arXiv:1707.06884] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  29. [29]
    F. Benini, H. Khachatryan and P. Milan, Black hole entropy in massive Type IIA, Class. Quant. Grav. 35 (2018) 035004 [arXiv:1707.06886] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  30. [30]
    N. Bobev and P.M. Crichigno, Universal RG Flows Across Dimensions and Holography, JHEP 12 (2017) 065 [arXiv:1708.05052] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  31. [31]
    N. Halmagyi and S. Lal, On the on-shell: the action of AdS 4 black holes, JHEP 03 (2018) 146 [arXiv:1710.09580] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  32. [32]
    J.T. Liu, L.A. Pando Zayas, V. Rathee and W. Zhao, One-Loop Test of Quantum Black Holes in anti-de Sitter Space, Phys. Rev. Lett. 120 (2018) 221602 [arXiv:1711.01076] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    A. Cabo-Bizet, U. Kol, L.A. Pando Zayas, I. Papadimitriou and V. Rathee, Entropy functional and the holographic attractor mechanism, JHEP 05 (2018) 155 [arXiv:1712.01849] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  34. [34]
    C. Toldo and B. Willett, Partition functions on 3d circle bundles and their gravity duals, JHEP 05 (2018) 116 [arXiv:1712.08861] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  35. [35]
    N. Bobev, V.S. Min and K. Pilch, Mass-deformed ABJM and black holes in AdS 4, JHEP 03 (2018) 050 [arXiv:1801.03135] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  36. [36]
    F. Benini, K. Hristov and A. Zaffaroni, Exact microstate counting for dyonic black holes in AdS4, Phys. Lett. B 771 (2017) 462 [arXiv:1608.07294] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  37. [37]
    G. Dall’Agata and A. Gnecchi, Flow equations and attractors for black holes in N = 2 U(1) gauged supergravity, JHEP 03 (2011) 037 [arXiv:1012.3756] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  38. [38]
    K. Hristov and S. Vandoren, Static supersymmetric black holes in AdS 4 with spherical symmetry, JHEP 04 (2011) 047 [arXiv:1012.4314] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  39. [39]
    K. Hristov, Dimensional reduction of BPS attractors in AdS gauged supergravities, JHEP 12 (2014) 066 [arXiv:1409.8504] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    J.B. Gutowski and H.S. Reall, General supersymmetric AdS 5 black holes, JHEP 04 (2004) 048 [hep-th/0401129] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    Z.W. Chong, M. Cvetič, H. Lü and C.N. Pope, Five-dimensional gauged supergravity black holes with independent rotation parameters, Phys. Rev. D 72 (2005) 041901 [hep-th/0505112] [INSPIRE].ADSMathSciNetGoogle Scholar
  42. [42]
    Z.W. Chong, M. Cvetič, H. Lü and C.N. Pope, General non-extremal rotating black holes in minimal five-dimensional gauged supergravity, Phys. Rev. Lett. 95 (2005) 161301 [hep-th/0506029] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  43. [43]
    H.K. Kunduri, J. Lucietti and H.S. Reall, Supersymmetric multi-charge AdS 5 black holes, JHEP 04 (2006) 036 [hep-th/0601156] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    B. de Wit, J.W. van Holten and A. Van Proeyen, Structure of N = 2 Supergravity, Nucl. Phys. B 184 (1981) 77 [Erratum ibid. B 222 (1983) 516] [INSPIRE].
  45. [45]
    B. de Wit and A. Van Proeyen, Potentials and Symmetries of General Gauged N = 2 Supergravity: Yang-Mills Models, Nucl. Phys. B 245 (1984) 89 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  46. [46]
    B. de Wit, P.G. Lauwers and A. Van Proeyen, Lagrangians of N = 2 Supergravity - Matter Systems, Nucl. Phys. B 255 (1985) 569 [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    B. de Wit and M. van Zalk, Electric and magnetic charges in N = 2 conformal supergravity theories, JHEP 10 (2011) 050 [arXiv:1107.3305] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  48. [48]
    M.M. Caldarelli and D. Klemm, Supersymmetry of Anti-de Sitter black holes, Nucl. Phys. B 545 (1999) 434 [hep-th/9808097] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  49. [49]
    K. Hristov, S. Katmadas and I. Lodato, Higher derivative corrections to BPS black hole attractors in 4d gauged supergravity, JHEP 05 (2016) 173 [arXiv:1603.00039] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  50. [50]
    B. de Wit and V. Reys, Euclidean supergravity, JHEP 12 (2017) 011 [arXiv:1706.04973] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  51. [51]
    B. de Wit, S. Katmadas and M. van Zalk, New supersymmetric higher-derivative couplings: Full N = 2 superspace does not count!, JHEP 01 (2011) 007 [arXiv:1010.2150] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  52. [52]
    S. Murthy and V. Reys, Quantum black hole entropy and the holomorphic prepotential of N = 2 supergravity, JHEP 10 (2013) 099 [arXiv:1306.3796] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  53. [53]
    S. Murthy and V. Reys, Functional determinants, index theorems and exact quantum black hole entropy, JHEP 12 (2015) 028 [arXiv:1504.01400] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  54. [54]
    R.K. Gupta, Y. Ito and I. Jeon, Supersymmetric Localization for BPS Black Hole Entropy: 1-loop Partition Function from Vector Multiplets, JHEP 11 (2015) 197 [arXiv:1504.01700] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  55. [55]
    R.K. Gupta and S. Murthy, All solutions of the localization equations for N = 2 quantum black hole entropy, JHEP 02 (2013) 141 [arXiv:1208.6221] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  56. [56]
    A. Castro, D. Grumiller, F. Larsen and R. McNees, Holographic Description of AdS 2 Black Holes, JHEP 11 (2008) 052 [arXiv:0809.4264] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    N. Berkovits, A ten-dimensional superYang-Mills action with off-shell supersymmetry, Phys. Lett. B 318 (1993) 104 [hep-th/9308128] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    D. Grumiller, R. McNees, J. Salzer, C. Valcárcel and D. Vassilevich, Menagerie of AdS 2 boundary conditions, JHEP 10 (2017) 203 [arXiv:1708.08471] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  59. [59]
    D.Z. Freedman and S.S. Pufu, The holography of F -maximization, JHEP 03 (2014) 135 [arXiv:1302.7310] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  60. [60]
    J.M. Maldacena, Wilson loops in large N field theories, Phys. Rev. Lett. 80 (1998) 4859 [hep-th/9803002] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  61. [61]
    S. Murthy and V. Reys, Single-centered black hole microstate degeneracies from instantons in supergravity, JHEP 04 (2016) 052 [arXiv:1512.01553] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  62. [62]
    A. Dabholkar, N. Drukker and J. Gomes, Localization in supergravity and quantum AdS 4 /CFT 3 holography, JHEP 10 (2014) 90 [arXiv:1406.0505] [INSPIRE].
  63. [63]
    J. Nian and X. Zhang, Entanglement Entropy of ABJM Theory and Entropy of Topological Black Hole, JHEP 07 (2017) 096 [arXiv:1705.01896] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  64. [64]
    C. Closset and H. Kim, Comments on twisted indices in 3d supersymmetric gauge theories, JHEP 08 (2016) 059 [arXiv:1605.06531] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  65. [65]
    K. Hristov and S. Katmadas, Wilson lines for AdS 5 black strings, JHEP 02 (2015) 009 [arXiv:1411.2432] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  66. [66]
    S.M. Hosseini, Black hole microstates and supersymmetric localization, Ph.D. thesis, Milan Bicocca U., 2018-02. arXiv:1803.01863 [INSPIRE].
  67. [67]
    N. Bobev, M. Bullimore and H.-C. Kim, Supersymmetric Casimir Energy and the Anomaly Polynomial, JHEP 09 (2015) 142 [arXiv:1507.08553] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  68. [68]
    F.A.H. Dolan, V.P. Spiridonov and G.S. Vartanov, From 4d superconformal indices to 3d partition functions, Phys. Lett. B 704 (2011) 234 [arXiv:1104.1787] [INSPIRE].ADSCrossRefGoogle Scholar
  69. [69]
    V.P. Spiridonov and G.S. Vartanov, Elliptic hypergeometric integrals and ’t Hooft anomaly matching conditions, JHEP 06 (2012) 016 [arXiv:1203.5677] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  70. [70]
    A. Guarino and O. Varela, Consistent \( \mathcal{N} \) = 8 truncation of massive IIA on S 6, JHEP 12 (2015) 020 [arXiv:1509.02526] [INSPIRE].ADSMATHGoogle Scholar
  71. [71]
    A. Guarino, D.L. Jafferis and O. Varela, String Theory Origin of Dyonic N = 8 Supergravity and Its Chern-Simons Duals, Phys. Rev. Lett. 115 (2015) 091601 [arXiv:1504.08009] [INSPIRE].ADSCrossRefGoogle Scholar
  72. [72]
    M. Fluder and J. Sparks, D2-brane Chern-Simons theories: F-maximization = a-maximization, JHEP 01 (2016) 048 [arXiv:1507.05817] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Institute for Nuclear Research and Nuclear EnergyBulgarian Academy of SciencesSofiaBulgaria
  2. 2.Department of Physics and Center for Field Theory and Particle PhysicsFudan UniversityShanghaiChina
  3. 3.Dipartimento di FisicaUniversità di Milano-BicoccaMilanoItaly
  4. 4.INFN, sezione di Milano-BicoccaMilanoItaly

Personalised recommendations