Advertisement

Observational signatures from horizonless black shells imitating rotating black holes

  • Ulf H. Danielsson
  • Suvendu Giri
Open Access
Regular Article - Theoretical Physics
  • 45 Downloads

Abstract

In arXiv:1705.10172 it was proposed that string theory replaces Schwarzschild black holes with horizonless thin shells with an AdS interior. In this paper we extend the analysis to slowly rotating black holes, solving the Israel-Lanczos-Sen junction conditions for a rotating shell composed of stringy matter to determine the metric. Outside of the shell we find a vacuum solution that differs from Kerr with a 32% larger quadrupole moment. We discuss the observational consequences and explore the possibility to distinguish between a black shell and a black hole. Promising methods include imaging of the black hole at the center of the Milky Way using the Event Horizon Telescope, precision measurements of stars in close orbits around the central black hole, and future observations of colliding super massive black holes using the space based gravitational wave observatory LISA.

Keywords

Black Holes Black Holes in String Theory Classical Theories of Gravity 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    S.W. Hawking, Breakdown of Predictability in Gravitational Collapse, Phys. Rev. D 14 (1976) 2460 [INSPIRE].ADSMathSciNetGoogle Scholar
  2. [2]
    G. ’t Hooft, The Black hole horizon as a quantum surface, Phys. Scripta T36 (1991) 247.Google Scholar
  3. [3]
    L. Susskind, L. Thorlacius and J. Uglum, The Stretched horizon and black hole complementarity, Phys. Rev. D 48 (1993) 3743 [hep-th/9306069] [INSPIRE].ADSMathSciNetGoogle Scholar
  4. [4]
    S.D. Mathur, The Information paradox: A pedagogical introduction, Class. Quant. Grav. 26 (2009) 224001 [arXiv:0909.1038] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    A. Almheiri, D. Marolf, J. Polchinski and J. Sully, Black Holes: Complementarity or Firewalls?, JHEP 02 (2013) 062 [arXiv:1207.3123] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    O. Lunin and S.D. Mathur, Statistical interpretation of Bekenstein entropy for systems with a stretched horizon, Phys. Rev. Lett. 88 (2002) 211303 [hep-th/0202072] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    S. Giusto, S.D. Mathur and A. Saxena, Dual geometries for a set of 3-charge microstates, Nucl. Phys. B 701 (2004) 357 [hep-th/0405017] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    S.D. Mathur, A. Saxena and Y.K. Srivastava, Constructing ‘hair’ for the three charge hole, Nucl. Phys. B 680 (2004) 415 [hep-th/0311092] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    S.D. Mathur, Where are the states of a black hole?, in Proceedings, 3rd International Symposium on Quantum theory and symmetries (QTS3), Cincinnati, U.S.A., September 10-14, 2003, pp. 152-158 (2004) [DOI: https://doi.org/10.1142/9789812702340 0019] [hep-th/0401115] [INSPIRE].
  10. [10]
    S.D. Mathur, The Fuzzball proposal for black holes: An Elementary review, Fortsch. Phys. 53 (2005) 793 [hep-th/0502050] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    I. Bena and N.P. Warner, One ring to rule them all . . . and in the darkness bind them?, Adv. Theor. Math. Phys. 9 (2005) 667 [hep-th/0408106] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    I. Bena, A. Puhm and B. Vercnocke, Non-extremal Black Hole Microstates: Fuzzballs of Fire or Fuzzballs of Fuzz ?, JHEP 12 (2012) 014 [arXiv:1208.3468] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  13. [13]
    I. Bena, P. Heidmann and P.F. Ramirez, A systematic construction of microstate geometries with low angular momentum, JHEP 10 (2017) 217 [arXiv:1709.02812] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    I. Bena and N.P. Warner, Black holes, black rings and their microstates, Lect. Notes Phys. 755 (2008) 1 [hep-th/0701216] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    V. Cardoso and P. Pani, The observational evidence for horizons: from echoes to precision gravitational-wave physics, arXiv:1707.03021 [INSPIRE].
  16. [16]
    U.H. Danielsson, G. Dibitetto and S. Giri, Black holes as bubbles of AdS, JHEP 10 (2017) 171 [arXiv:1705.10172] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    M. Visser and D.L. Wiltshire, Stable gravastars: An Alternative to black holes?, Class. Quant. Grav. 21 (2004) 1135 [gr-qc/0310107] [INSPIRE].
  18. [18]
    W. Israel, Singular hypersurfaces and thin shells in general relativity, Nuovo Cim. B 44S10 (1966) 1 [Erratum ibid. B 48 (1967) 463] [INSPIRE].
  19. [19]
    K. Lanczos, Flächenhafte Verteilung der Materie in der Einsteinschen Gravitationstheorie, Annalen Phys. 379 (1924) 518.ADSCrossRefzbMATHGoogle Scholar
  20. [20]
    N. Sen, Über die Grenzbedingungen des Schwerefelds an unstetigen Kreisfläche, Annalen Phys. 378 (1924) 365.ADSCrossRefGoogle Scholar
  21. [21]
    H.A. Buchdahl, General Relativistic Fluid Spheres, Phys. Rev. 116 (1959) 1027 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    K. Schwarzschild, On the gravitational field of a sphere of incompressible fluid according to Einstein’s theory, Sitzungsber. Preuss. Akad. Wiss. Berlin (Math. Phys.) 1916 (1916) 424 [physics/9912033] [INSPIRE].
  23. [23]
    M. Elvis, G. Risaliti and G. Zamorani, Most supermassive black holes must be rapidly rotating, Astrophys. J. 565 (2002) L75 [astro-ph/0112413] [INSPIRE].
  24. [24]
    J.-M. Wang, Y.-M. Chen, L.C. Ho and R.J. McLure, Evidence for rapidly spinning black holes in quasars, Astrophys. J. 642 (2006) L111 [astro-ph/0603813] [INSPIRE].
  25. [25]
    V. De La Cruz and W. Israel, Spinning Shell as a Source of the Kerr Metric, Phys. Rev. 170 (1968) 1187 [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    V.S. Manko and I.D. Novikov, Generalizations of the kerr and kerr-newman metrics possessing an arbitrary set of mass-multipole moments, Class. Quant. Grav. 9 (1992) 2477.ADSMathSciNetCrossRefzbMATHGoogle Scholar
  27. [27]
    M.A. Abramowicz, G.J.E. Almergren, W. Kluzniak and A.V. Thampan, Circular geodesics in the Hartle-Thorne metric, gr-qc/0312070 [INSPIRE].
  28. [28]
    J. Castejon-Amenedo and V.S. Manko, Superposition of the Kerr metric with the generalized Erez-Rosen solution, Phys. Rev. D 41 (1990) 2018 [INSPIRE].ADSMathSciNetGoogle Scholar
  29. [29]
    J.B. Hartle and K.S. Thorne, Slowly Rotating Relativistic Stars. II. Models for Neutron Stars and Supermassive Stars, Astrophys. J. 153 (1968) 807 [INSPIRE].
  30. [30]
    N. Uchikata and S. Yoshida, Slowly rotating thin shell gravastars, Class. Quant. Grav. 33 (2016) 025005 [arXiv:1506.06485] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  31. [31]
    B. Carter, Axisymmetric Black Hole Has Only Two Degrees of Freedom, Phys. Rev. Lett. 26 (1971) 331 [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    S.W. Hawking, Black holes in general relativity, Commun. Math. Phys. 25 (1972) 152 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  33. [33]
    R.P. Geroch, Multipole moments. II. Curved space, J. Math. Phys. 11 (1970) 2580 [INSPIRE].
  34. [34]
    R.O. Hansen, Multipole moments of stationary space-times, J. Math. Phys. 15 (1974) 46 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  35. [35]
    G. Fodor, C. Hoenselaers and Z. Perjés, Multipole moments of axisymmetric systems in relativity, J. Math. Phys. 30 (1989) 2252.ADSMathSciNetCrossRefzbMATHGoogle Scholar
  36. [36]
    H. Quevedo, General static axisymmetric solution of Einstein’s vacuum field equations in prolate spheroidal coordinates, Phys. Rev. D 39 (1989) 2904 [INSPIRE].ADSMathSciNetGoogle Scholar
  37. [37]
    S.J. Vigeland, Multipole moments of bumpy black holes, Phys. Rev. D 82 (2010) 104041 [arXiv:1008.1278] [INSPIRE].ADSGoogle Scholar
  38. [38]
    G. Risaliti et al., A rapidly spinning supermassive black hole at the centre of NGC 1365, Nature 494 (2013) 449 [arXiv:1302.7002] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    R.C. Reis, M.T. Reynolds, J.M. Miller and D.J. Walton, Reflection From the Strong Gravity Regime in a z=0.658 Gravitationally Lensed-Quasar, Nature 507 (2014) 207 [arXiv:1403.4973] [INSPIRE].
  40. [40]
    R. Konoplya and A. Zhidenko, Detection of gravitational waves from black holes: Is there a window for alternative theories?, Phys. Lett. B 756 (2016) 350 [arXiv:1602.04738] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    N.V. Krishnendu, K.G. Arun and C.K. Mishra, Testing the binary black hole nature of a compact binary coalescence, Phys. Rev. Lett. 119 (2017) 091101 [arXiv:1701.06318] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    R.D. Blandford and D.G. Payne, Hydromagnetic flows from accretion discs and the production of radio jets, Mon. Not. Roy. Astron. Soc. 199 (1982) 883 [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  43. [43]
    R. Narayan, R. Mahadevan, J.E. Grindlay, R.G. Popham and C. Gammie, Advection-dominated accretion model of Sagittarius A : evidence for a black hole at the galactic center, Astrophys. J. 492 (1998) 554 [astro-ph/9706112] [INSPIRE].
  44. [44]
    C. Bambi, Constraint on the quadrupole moment of super-massive black hole candidates from the estimate of the mean radiative efficiency of AGN, Phys. Rev. D 83 (2011) 103003 [arXiv:1102.0616] [INSPIRE].ADSGoogle Scholar
  45. [45]
    R.D. Blandford and R.L. Znajek, Electromagnetic extractions of energy from Kerr black holes, Mon. Not. Roy. Astron. Soc. 179 (1977) 433 [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    R. Penrose and R.M. Floyd, Extraction of rotational energy from a black hole, Nature 229 (1971) 177 [INSPIRE].ADSGoogle Scholar
  47. [47]
    J.L. Friedman, Ergosphere instability, Commun. Math. Phys. 63 (1978) 243.ADSMathSciNetCrossRefzbMATHGoogle Scholar
  48. [48]
    E. Maggio, P. Pani and V. Ferrari, Exotic Compact Objects and How to Quench their Ergoregion Instability, Phys. Rev. D 96 (2017) 104047 [arXiv:1703.03696] [INSPIRE].ADSGoogle Scholar
  49. [49]
    T. Johannsen, Sgr A and General Relativity, Class. Quant. Grav. 33 (2016) 113001 [arXiv:1512.03818] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    D. Psaltis, N. Wex and M. Krämer, A Quantitative Test of the No-Hair Theorem with Sgr A* using stars, pulsars and the Event Horizon Telescope, Astrophys. J. 818 (2016) 121 [arXiv:1510.00394] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    J. Abedi, H. Dykaar and N. Afshordi, Echoes from the Abyss: Tentative evidence for Planck-scale structure at black hole horizons, Phys. Rev. D 96 (2017) 082004 [arXiv:1612.00266] [INSPIRE].ADSGoogle Scholar
  52. [52]
    V. Cardoso, S. Hopper, C.F.B. Macedo, C. Palenzuela and P. Pani, Gravitational-wave signatures of exotic compact objects and of quantum corrections at the horizon scale, Phys. Rev. D 94 (2016) 084031 [arXiv:1608.08637] [INSPIRE].ADSMathSciNetGoogle Scholar
  53. [53]
    V. Cardoso, E. Franzin and P. Pani, Is the gravitational-wave ringdown a probe of the event horizon?, Phys. Rev. Lett. 116 (2016) 171101 [arXiv:1602.07309] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    C. Barceló, R. Carballo-Rubio and L.J. Garay, Gravitational wave echoes from macroscopic quantum gravity effects, JHEP 05 (2017) 054 [arXiv:1701.09156] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Institutionen för fysik och astronomiUniversity of UppsalaUppsalaSweden

Personalised recommendations