Advertisement

On the angular distribution of Λb → Λ(→ N π)τ +τ decay

  • Diganta Das
Open Access
Regular Article - Theoretical Physics
  • 21 Downloads

Abstract

We present a full angular distribution of the four body Λb → Λ(→ N π)ℓ+ decay where the leptons are massive and the Λb is unpolarized, in an operator basis which includes the Standard Model operators, new vector and axial-vector operators, and scalar and pseudo-scalar operators. The angular coefficients are expressed in terms of transversity amplitudes. We study several Λb → Λ(→ pπ)τ +τ observables in the Standard Model and in the presence of the new operators. For our numerical analysis, we use the form factors from lattice QCD calculations.

Keywords

Beyond Standard Model Heavy Quark Physics 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    F. Krüger, L.M. Sehgal, N. Sinha and R. Sinha, Angular distribution and CP asymmetries in the decays \( \overline{B}\to {K}^{-}{\pi}^{+}{e}^{-}{e}^{+} \) and \( \overline{B}\to {\pi}^{-}{\pi}^{+}{e}^{-}{e}^{+} \), Phys. Rev. D 61 (2000) 114028 [Erratum ibid. D 63 (2001) 019901] [hep-ph/9907386] [INSPIRE].
  2. [2]
    LHCb collaboration, Differential branching fraction and angular analysis of Λ b0 → Λμ + μ decays, JHEP 06 (2015) 115 [arXiv:1503.07138] [INSPIRE].
  3. [3]
    CDF collaboration, T. Aaltonen et al., Observation of the Baryonic Flavor-Changing Neutral Current Decay Λb → Λμ + μ , Phys. Rev. Lett. 107 (2011) 201802 [arXiv:1107.3753] [INSPIRE].
  4. [4]
    P. Böer, T. Feldmann and D. van Dyk, Angular Analysis of the Decay Λb → Λ(→ N π) + , JHEP 01 (2015) 155 [arXiv:1410.2115] [INSPIRE].
  5. [5]
    T. Blake and M. Kreps, Angular distribution of polarised Λb baryons decaying to Λ + , JHEP 11 (2017) 138 [arXiv:1710.00746] [INSPIRE].
  6. [6]
    C. Bobeth, M. Misiak and J. Urban, Photonic penguins at two loops and m t dependence of BR[BX s l + l ], Nucl. Phys. B 574 (2000) 291 [hep-ph/9910220] [INSPIRE].
  7. [7]
    T. Feldmann and M.W.Y. Yip, Form Factors for Λb → Λ Transitions in SCET, Phys. Rev. D 85 (2012) 014035 [Erratum ibid. D 86 (2012) 079901] [arXiv:1111.1844] [INSPIRE].
  8. [8]
    A. Ali, C. Hambrock, A.Ya. Parkhomenko and W. Wang, Light-Cone Distribution Amplitudes of the Ground State Bottom Baryons in HQET, Eur. Phys. J. C 73 (2013) 2302 [arXiv:1212.3280] [INSPIRE].
  9. [9]
    G. Bell, T. Feldmann, Y.-M. Wang and M.W.Y. Yip, Light-Cone Distribution Amplitudes for Heavy-Quark Hadrons, JHEP 11 (2013) 191 [arXiv:1308.6114] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    V.M. Braun, S.E. Derkachov and A.N. Manashov, Integrability of the evolution equations for heavy-light baryon distribution amplitudes, Phys. Lett. B 738 (2014) 334 [arXiv:1406.0664] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    Y.-m. Wang, Y. Li and C.-D. Lu, Rare Decays of Λb → Λ + γ and Λb → Λ + + in the Light-cone Sum Rules, Eur. Phys. J. C 59 (2009) 861 [arXiv:0804.0648] [INSPIRE].
  12. [12]
    Y.-M. Wang and Y.-L. Shen, Perturbative Corrections to Λb → Λ Form Factors from QCD Light-Cone Sum Rules, JHEP 02 (2016) 179 [arXiv:1511.09036] [INSPIRE].
  13. [13]
    W. Wang, Factorization of Heavy-to-Light Baryonic Transitions in SCET, Phys. Lett. B 708 (2012) 119 [arXiv:1112.0237] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    T. Mannel and Y.-M. Wang, Heavy-to-light baryonic form factors at large recoil, JHEP 12 (2011) 067 [arXiv:1111.1849] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  15. [15]
    R.N. Faustov and V.O. Galkin, Rare Λb → Λl + l and Λb → Λγ decays in the relativistic quark model, Phys. Rev. D 96 (2017) 053006 [arXiv:1705.07741] [INSPIRE].
  16. [16]
    W. Detmold and S. Meinel, Λb → Λ + form factors, differential branching fraction and angular observables from lattice QCD with relativistic b quarks, Phys. Rev. D 93 (2016) 074501 [arXiv:1602.01399] [INSPIRE].ADSGoogle Scholar
  17. [17]
    W. Detmold, C.J.D. Lin, S. Meinel and M. Wingate, Λb → Λ + form factors and differential branching fraction from lattice QCD, Phys. Rev. D 87 (2013) 074502 [arXiv:1212.4827] [INSPIRE].
  18. [18]
    D. Das, Model independent New Physics analysis in Λb → Λμ + μ decay, Eur. Phys. J. C 78 (2018) 230 [arXiv:1802.09404] [INSPIRE].
  19. [19]
    S. Roy, R. Sain and R. Sinha, Lepton mass effects and angular observables in Λb → Λ(→ ) + , Phys. Rev. D 96 (2017) 116005 [arXiv:1710.01335] [INSPIRE].ADSGoogle Scholar
  20. [20]
    T. Gutsche, M.A. Ivanov, J.G. Korner, V.E. Lyubovitskij and P. Santorelli, Rare baryon decays Λb → Λl + l (l = e, μ, τ ) and Λb → Λγ: differential and total rates, lepton- and hadron-side forward-backward asymmetries, Phys. Rev. D 87 (2013) 074031 [arXiv:1301.3737] [INSPIRE].
  21. [21]
    LHCb collaboration, Search for the decays B s0 → τ + τ and B 0τ + τ , Phys. Rev. Lett. 118 (2017) 251802 [arXiv:1703.02508] [INSPIRE].
  22. [22]
    BaBar collaboration, J.P. Lees et al., Search for B +K + τ + τ at the BaBar experiment, Phys. Rev. Lett. 118 (2017) 031802 [arXiv:1605.09637] [INSPIRE].
  23. [23]
    R. Alonso, B. Grinstein and J. Martin Camalich, Lepton universality violation and lepton flavor conservation in B-meson decays, JHEP 10 (2015) 184 [arXiv:1505.05164] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    A. Crivellin, D. Müller and T. Ota, Simultaneous explanation of R(D (∗)) and b + μ : the last scalar leptoquarks standing, JHEP 09 (2017) 040 [arXiv:1703.09226] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    B. Capdevila, A. Crivellin, S. Descotes-Genon, L. Hofer and J. Matias, Searching for New Physics with b + τ processes, Phys. Rev. Lett. 120 (2018) 181802 [arXiv:1712.01919] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    LHCb collaboration, Test of lepton universality using B +K + + decays, Phys. Rev. Lett. 113 (2014) 151601 [arXiv:1406.6482] [INSPIRE].
  27. [27]
    LHCb collaboration, Test of lepton universality with B 0K ∗0 + decays, JHEP 08 (2017) 055 [arXiv:1705.05802] [INSPIRE].
  28. [28]
    LHCb collaboration, Measurement of the ratio of branching fractions ℬ(B c+ → J/ψτ + ν τ)/ℬ(B c+ → J/ψμ + ν μ), Phys. Rev. Lett. 120 (2018) 121801 [arXiv:1711.05623] [INSPIRE].
  29. [29]
    Heavy Flavor Averaging Group (HFLAV) (FPCP 2017), http://www.slac.stanford.edu/xorg/hflav/semi/fpcp17/RDRDs.html.
  30. [30]
    M. Beneke, T. Feldmann and D. Seidel, Systematic approach to exclusive BV l + l , V γ decays, Nucl. Phys. B 612 (2001) 25 [hep-ph/0106067] [INSPIRE].
  31. [31]
    B. Grinstein and D. Pirjol, Exclusive rare BK + decays at low recoil: Controlling the long-distance effects, Phys. Rev. D 70 (2004) 114005 [hep-ph/0404250] [INSPIRE].
  32. [32]
    M. Beylich, G. Buchalla and T. Feldmann, Theory of BK (∗) + decays at high q 2 : OPE and quark-hadron duality, Eur. Phys. J. C 71 (2011) 1635 [arXiv:1101.5118] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    J. Lyon and R. Zwicky, Resonances gone topsy turvy — the charm of QCD or new physics in bsℓ + ?, arXiv:1406.0566 [INSPIRE].
  34. [34]
    M. Beneke, T. Feldmann and D. Seidel, Exclusive radiative and electroweak bd and bs penguin decays at NLO, Eur. Phys. J. C 41 (2005) 173 [hep-ph/0412400] [INSPIRE].
  35. [35]
    J.F. Kamenik, S. Monteil, A. Semkiv and L.V. Silva, Lepton polarization asymmetries in rare semi-tauonic bs exclusive decays at FCC-ee, Eur. Phys. J. C 77 (2017) 701 [arXiv:1705.11106] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    C. Bobeth and U. Haisch, New Physics in \( {\varGamma}_{12}^s:\left(\overline{s}b\right)\left(\overline{\tau}\tau \right) \) Operators, Acta Phys. Polon. B 44 (2013) 127 [arXiv:1109.1826] [INSPIRE].
  37. [37]
    W. Altmannshofer, P. Ball, A. Bharucha, A.J. Buras, D.M. Straub and M. Wick, Symmetries and Asymmetries of BK μ + μ Decays in the Standard Model and Beyond, JHEP 01 (2009) 019 [arXiv:0811.1214] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    A.J. Buras and M. Münz, Effective Hamiltonian for BX s e + e beyond leading logarithms in the NDR and HV schemes, Phys. Rev. D 52 (1995) 186 [hep-ph/9501281] [INSPIRE].
  39. [39]
    M. Misiak, The bse + e and bsγ decays with next-to-leading logarithmic QCD corrections, Nucl. Phys. B 393 (1993) 23 [Erratum ibid. B 439 (1995) 461] [INSPIRE].
  40. [40]
    D. Seidel, Analytic two loop virtual corrections to bdℓ + , Phys. Rev. D 70 (2004) 094038 [hep-ph/0403185] [INSPIRE].
  41. [41]
    Particle Data Group collaboration, C. Patrignani et al., Review of Particle Physics, Chin. Phys. C 40 (2016) 100001 [INSPIRE].
  42. [42]
    UTfit collaboration, M. Bona et al., The Unitarity Triangle Fit in the Standard Model and Hadronic Parameters from Lattice QCD: A Reappraisal after the Measurements of Δm s and BR(Bτν τ ), JHEP 10 (2006) 081 [hep-ph/0606167] [INSPIRE].

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Department of Physics and AstrophysicsUniversity of DelhiDelhiIndia

Personalised recommendations