Advertisement

An S4 × SU(5) SUSY GUT of flavour in 6d

  • Francisco J. de Anda
  • Stephen F. King
Open Access
Regular Article - Theoretical Physics

Abstract

We propose a 6d model with a SUSY SU(5) gauge symmetry. After compactification, it explains the origin of the S4 Family Symmetry with CSD3 vacuum alignment, as well as SU(5) breaking with doublet-triplet splitting. The model naturally accounts for all quark and lepton (including neutrino) masses and mixings, incorporating the highly predictive Littlest Seesaw structure. It spontaneously breaks CP symmetry, resulting in successful CP violation in the quark and lepton sectors, while solving the Strong CP problem. It also explains the Baryon Asymmetry of the Universe (BAU) through leptogenesis, with the leptogenesis phase directly linked to the Dirac and Majorana phases.

Keywords

Discrete Symmetries Field Theories in Higher Dimensions GUT Neutrino Physics 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    H. Ishimori, T. Kobayashi, H. Ohki, Y. Shimizu, H. Okada and M. Tanimoto, Non-Abelian discrete symmetries in particle physics, Prog. Theor. Phys. Suppl. 183 (2010) 1 [arXiv:1003.3552] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  2. [2]
    P. Langacker, Grand unified theories and proton decay, Phys. Rept. 72 (1981) 185 [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    S. Raby, Desperately seeking supersymmetry (SUSY), Rept. Prog. Phys. 67 (2004) 755 [hep-ph/0401155] [INSPIRE].
  4. [4]
    D.J.H. Chung, L.L. Everett, G.L. Kane, S.F. King, J.D. Lykken and L.-T. Wang, The soft supersymmetry breaking Lagrangian: theory and applications, Phys. Rept. 407 (2005) 1 [hep-ph/0312378] [INSPIRE].
  5. [5]
    S.F. King, Unified models of neutrinos, flavour and CP-violation, Prog. Part. Nucl. Phys. 94 (2017) 217 [arXiv:1701.04413] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    S.F. King, Models of neutrino mass, mixing and CP-violation, J. Phys. G 42 (2015) 123001 [arXiv:1510.02091] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    S.F. King and C. Luhn, Neutrino mass and mixing with discrete symmetry, Rept. Prog. Phys. 76 (2013) 056201 [arXiv:1301.1340] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    S.F. King, A. Merle, S. Morisi, Y. Shimizu and M. Tanimoto, Neutrino mass and mixing: from theory to experiment, New J. Phys. 16 (2014) 045018 [arXiv:1402.4271] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    H. Georgi and S.L. Glashow, Unity of all elementary particle forces, Phys. Rev. Lett. 32 (1974) 438 [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    C. Hagedorn, S.F. King and C. Luhn, A SUSY GUT of flavour with S 4 × SU(5) to NLO, JHEP 06 (2010) 048 [arXiv:1003.4249] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  11. [11]
    C. Hagedorn, S.F. King and C. Luhn, SUSY S 4 × SU(5) revisited, Phys. Lett. B 717 (2012) 207 [arXiv:1205.3114] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    D. Meloni, Bimaximal mixing and large θ 13 in a SUSY SU(5) model based on S 4, JHEP 10 (2011) 010 [arXiv:1107.0221] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  13. [13]
    B.D. Callen and R.R. Volkas, Large lepton mixing angles from a 4 + 1-dimensional SU(5) × A 4 domain-wall braneworld model, Phys. Rev. D 86 (2012) 056007 [arXiv:1205.3617] [INSPIRE].ADSGoogle Scholar
  14. [14]
    I.K. Cooper, S.F. King and C. Luhn, A 4 × SU(5) SUSY GUT of flavour with trimaximal neutrino mixing, JHEP 06 (2012) 130 [arXiv:1203.1324] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    A. Meroni, S.T. Petcov and M. Spinrath, A SUSY SU(5) × Tunified model of flavour with large θ 13, Phys. Rev. D 86 (2012) 113003 [arXiv:1205.5241] [INSPIRE].ADSGoogle Scholar
  16. [16]
    S. Antusch, S.F. King and M. Spinrath, Measurable neutrino mass scale in A 4 × SU(5), Phys. Rev. D 83 (2011) 013005 [arXiv:1005.0708] [INSPIRE].ADSGoogle Scholar
  17. [17]
    S.F. King, C. Luhn and A.J. Stuart, A grand Δ(96) × SU(5) flavour model, Nucl. Phys. B 867 (2013) 203 [arXiv:1207.5741] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  18. [18]
    M. Dimou, S.F. King and C. Luhn, Approaching minimal flavour violation from an SU(5) × S 4 × U(1) SUSY GUT, JHEP 02 (2016) 118 [arXiv:1511.07886] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    M. Dimou, S.F. King and C. Luhn, Phenomenological implications of an SU(5) × S 4 × U(1) SUSY GUT of flavor, Phys. Rev. D 93 (2016) 075026 [arXiv:1512.09063] [INSPIRE].ADSGoogle Scholar
  20. [20]
    S. Antusch, I. de Medeiros Varzielas, V. Maurer, C. Sluka and M. Spinrath, Towards predictive flavour models in SUSY SU(5) GUTs with doublet-triplet splitting, JHEP 09 (2014) 141 [arXiv:1405.6962] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    F. Björkeroth, F.J. de Anda, I. de Medeiros Varzielas and S.F. King, Towards a complete A 4 × SU(5) SUSY GUT, JHEP 06 (2015) 141 [arXiv:1503.03306] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    Y. Kawamura, Triplet doublet splitting, proton stability and extra dimension, Prog. Theor. Phys. 105 (2001) 999 [hep-ph/0012125] [INSPIRE].
  23. [23]
    L.J. Hall and Y. Nomura, Grand unification in higher dimensions, Annals Phys. 306 (2003) 132 [hep-ph/0212134] [INSPIRE].
  24. [24]
    G. Altarelli and F. Feruglio, SU(5) grand unification in extra dimensions and proton decay, Phys. Lett. B 511 (2001) 257 [hep-ph/0102301] [INSPIRE].
  25. [25]
    G. Altarelli, F. Feruglio and C. Hagedorn, A SUSY SU(5) grand unified model of tri-bimaximal mixing from A 4, JHEP 03 (2008) 052 [arXiv:0802.0090] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    T.J. Burrows and S.F. King, A 4 family symmetry from SU(5) SUSY GUTs in 6d, Nucl. Phys. B 835 (2010) 174 [arXiv:0909.1433] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  27. [27]
    T.J. Burrows and S.F. King, A 4 × SU(5) SUSY GUT of flavour in 8d, Nucl. Phys. B 842 (2011) 107 [arXiv:1007.2310] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  28. [28]
    G. Altarelli, F. Feruglio and I. Masina, From minimal to realistic supersymmetric SU(5) grand unification, JHEP 11 (2000) 040 [hep-ph/0007254] [INSPIRE].
  29. [29]
    C.D. Froggatt and H.B. Nielsen, Hierarchy of quark masses, Cabibbo angles and CP-violation, Nucl. Phys. B 147 (1979) 277 [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    T. Asaka, W. Buchmüller and L. Covi, Gauge unification in six-dimensions, Phys. Lett. B 523 (2001) 199 [hep-ph/0108021] [INSPIRE].
  31. [31]
    G. Altarelli, F. Feruglio and Y. Lin, Tri-bimaximal neutrino mixing from orbifolding, Nucl. Phys. B 775 (2007) 31 [hep-ph/0610165] [INSPIRE].
  32. [32]
    A. Adulpravitchai and M.A. Schmidt, Flavored orbifold GUTan SO(10) × S 4 model, JHEP 01 (2011) 106 [arXiv:1001.3172] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  33. [33]
    A. Adulpravitchai, A. Blum and M. Lindner, Non-Abelian discrete flavor symmetries from T 2 /Z N orbifolds, JHEP 07 (2009) 053 [arXiv:0906.0468] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    T. Kobayashi, H.P. Nilles, F. Ploger, S. Raby and M. Ratz, Stringy origin of non-Abelian discrete flavor symmetries, Nucl. Phys. B 768 (2007) 135 [hep-ph/0611020] [INSPIRE].
  35. [35]
    S.F. King, Minimal predictive see-saw model with normal neutrino mass hierarchy, JHEP 07 (2013) 137 [arXiv:1304.6264] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    F. Björkeroth and S.F. King, Testing constrained sequential dominance models of neutrinos, J. Phys. G 42 (2015) 125002 [arXiv:1412.6996] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    S.F. King, Littlest seesaw, JHEP 02 (2016) 085 [arXiv:1512.07531] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    S.F. King and C. Luhn, Littlest seesaw model from S 4 × U(1), JHEP 09 (2016) 023 [arXiv:1607.05276] [INSPIRE].ADSzbMATHGoogle Scholar
  39. [39]
    P. Ballett, S.F. King, S. Pascoli, N.W. Prouse and T. Wang, Precision neutrino experiments vs the littlest seesaw, JHEP 03 (2017) 110 [arXiv:1612.01999] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    S.F. King, J. Zhang and S. Zhou, Renormalisation group corrections to the littlest seesaw model and maximal atmospheric mixing, JHEP 12 (2016) 023 [arXiv:1609.09402] [INSPIRE].ADSGoogle Scholar
  41. [41]
    T. Geib and S.F. King, Comprehensive renormalization group analysis of the littlest seesaw model, Phys. Rev. D 97 (2018) 075010 [arXiv:1709.07425] [INSPIRE].ADSGoogle Scholar
  42. [42]
    F. Björkeroth, F.J. de Anda, S.F. King and E. Perdomo, A natural S 4 × SO(10) model of flavour, JHEP 10 (2017) 148 [arXiv:1705.01555] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    F.J. de Anda, S.F. King and E. Perdomo, SO(10) × S 4 grand unified theory of flavour and leptogenesis, JHEP 12 (2017) 075 [arXiv:1710.03229] [INSPIRE].CrossRefzbMATHGoogle Scholar
  44. [44]
    T. Kobayashi, Y. Omura and K. Yoshioka, Flavor symmetry breaking and vacuum alignment on orbifolds, Phys. Rev. D 78 (2008) 115006 [arXiv:0809.3064] [INSPIRE].ADSGoogle Scholar
  45. [45]
    L.E. Ibáñez and G.G. Ross, SU(2)L × U(1) symmetry breaking as a radiative effect of supersymmetry breaking in GUTs, Phys. Lett. B 110 (1982) 215 [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    L.E. Ibáñez and G.G. Ross, Supersymmetric Higgs and radiative electroweak breaking, Comptes Rendus Physique 8 (2007) 1013 [hep-ph/0702046] [INSPIRE].
  47. [47]
    B.R. Greene, K.H. Kirklin, P.J. Miron and G.G. Ross, A three generation superstring model. 2. Symmetry breaking and the low-energy theory, Nucl. Phys. B 292 (1987) 606 [INSPIRE].
  48. [48]
    I. de Medeiros Varzielas, S.F. King and G.G. Ross, Neutrino tri-bi-maximal mixing from a non-Abelian discrete family symmetry, Phys. Lett. B 648 (2007) 201 [hep-ph/0607045] [INSPIRE].
  49. [49]
    S.F. King and M. Malinsky, A 4 family symmetry and quark-lepton unification, Phys. Lett. B 645 (2007) 351 [hep-ph/0610250] [INSPIRE].
  50. [50]
    I. de Medeiros Varzielas and G.G. Ross, Family symmetries and the SUSY flavour problem, hep-ph/0612220 [INSPIRE].
  51. [51]
    I. de Medeiros Varzielas, Family symmetries and the origin of fermion masses and mixings, Ph.D. thesis, Oxford U., Oxford, U.K., (2007) [arXiv:0801.2775] [INSPIRE].
  52. [52]
    R. Howl and S.F. King, Solving the flavour problem in supersymmetric Standard Models with three Higgs families, Phys. Lett. B 687 (2010) 355 [arXiv:0908.2067] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    S.F. King and C. Luhn, Littlest seesaw model from S 4 × U(1), JHEP 09 (2016) 023 [arXiv:1607.05276] [INSPIRE].ADSzbMATHGoogle Scholar
  54. [54]
    F. Björkeroth, F.J. de Anda, I. de Medeiros Varzielas and S.F. King, Towards a complete Δ(27) × SO(10) SUSY GUT, Phys. Rev. D 94 (2016) 016006 [arXiv:1512.00850] [INSPIRE].ADSGoogle Scholar
  55. [55]
    S. Antusch and V. Maurer, Running quark and lepton parameters at various scales, JHEP 11 (2013) 115 [arXiv:1306.6879] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    I. Esteban, M.C. Gonzalez-Garcia, M. Maltoni, I. Martinez-Soler and T. Schwetz, Updated fit to three neutrino mixing: exploring the accelerator-reactor complementarity, JHEP 01 (2017) 087 [arXiv:1611.01514] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    NuFIT 3.2 results webpage, http://www.nu-fit.org, (2018).
  58. [58]
    S. Antusch, J. Kersten, M. Lindner, M. Ratz and M.A. Schmidt, Running neutrino mass parameters in see-saw scenarios, JHEP 03 (2005) 024 [hep-ph/0501272] [INSPIRE].
  59. [59]
    C.A. Baker et al., An improved experimental limit on the electric dipole moment of the neutron, Phys. Rev. Lett. 97 (2006) 131801 [hep-ex/0602020] [INSPIRE].
  60. [60]
    M. Spinrath, The strong CP problem and discrete symmetries, Mod. Phys. Lett. A 30 (2015) 1530014 [Adv. Ser. Direct. High Energy Phys. 25 (2015) 105] [arXiv:1503.03659] [INSPIRE].
  61. [61]
    S. Antusch, M. Holthausen, M.A. Schmidt and M. Spinrath, Solving the strong CP problem with discrete symmetries and the right unitarity triangle, Nucl. Phys. B 877 (2013) 752 [arXiv:1307.0710] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  62. [62]
    A.E. Nelson, Naturally weak CP-violation, Phys. Lett. B 136 (1984) 387 [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    A.E. Nelson, Calculation of θ Barr, Phys. Lett. B 143 (1984) 165 [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    S.M. Barr, Solving the strong CP problem without the Peccei-Quinn symmetry, Phys. Rev. Lett. 53 (1984) 329 [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
    S.M. Barr, A natural class of non-Peccei-Quinn models, Phys. Rev. D 30 (1984) 1805 [INSPIRE].ADSGoogle Scholar
  66. [66]
    P. Di Bari, An introduction to leptogenesis and neutrino properties, Contemp. Phys. 53 (2012) 315 [arXiv:1206.3168] [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    F. Björkeroth, F.J. de Anda, I. de Medeiros Varzielas and S.F. King, Leptogenesis in minimal predictive seesaw models, JHEP 10 (2015) 104 [arXiv:1505.05504] [INSPIRE].ADSCrossRefGoogle Scholar
  68. [68]
    F. Björkeroth, F.J. de Anda, I. de Medeiros Varzielas and S.F. King, Leptogenesis in a Δ(27) × SO(10) SUSY GUT, JHEP 01 (2017) 077 [arXiv:1609.05837] [INSPIRE].ADSCrossRefGoogle Scholar
  69. [69]
    Particle Data Group collaboration, C. Patrignani et al., Review of particle physics, Chin. Phys. C 40 (2016) 100001 [INSPIRE].
  70. [70]
    H. Murayama and D.B. Kaplan, Family symmetries and proton decay, Phys. Lett. B 336 (1994) 221 [hep-ph/9406423] [INSPIRE].
  71. [71]
    P. Nath and P. Fileviez Perez, Proton stability in grand unified theories, in strings and in branes, Phys. Rept. 441 (2007) 191 [hep-ph/0601023] [INSPIRE].
  72. [72]
    A. Bueno et al., Nucleon decay searches with large liquid argon TPC detectors at shallow depths: atmospheric neutrinos and cosmogenic backgrounds, JHEP 04 (2007) 041 [hep-ph/0701101] [INSPIRE].
  73. [73]
    G. Altarelli and F. Feruglio, SU(5) grand unification in extra dimensions and proton decay, Phys. Lett. B 511 (2001) 257 [hep-ph/0102301] [INSPIRE].
  74. [74]
    A. Hebecker and J. March-Russell, Proton decay signatures of orbifold GUTs, Phys. Lett. B 539 (2002) 119 [hep-ph/0204037] [INSPIRE].
  75. [75]
    W. Buchmüller, L. Covi, D. Emmanuel-Costa and S. Wiesenfeldt, Flavour structure and proton decay in 6D orbifold GUTs, JHEP 09 (2004) 004 [hep-ph/0407070] [INSPIRE].
  76. [76]
    S.F. King and C. Luhn, Neutrino mass and mixing with discrete symmetry, Rept. Prog. Phys. 76 (2013) 056201 [arXiv:1301.1340] [INSPIRE].ADSCrossRefGoogle Scholar
  77. [77]
    F. Bazzocchi, L. Merlo and S. Morisi, Fermion masses and mixings in a S 4 -based model, Nucl. Phys. B 816 (2009) 204 [arXiv:0901.2086] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  78. [78]
    S.F. King and C. Luhn, Trimaximal neutrino mixing from vacuum alignment in A 4 and S 4 models, JHEP 09 (2011) 042 [arXiv:1107.5332] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.School of Physics and AstronomyUniversity of SouthamptonSouthamptonU.K.
  2. 2.Tepatitlán’s Institute for Theoretical StudiesJaliscoMexico

Personalised recommendations