Advertisement

Complexity growth with Lifshitz scaling and hyperscaling violation

  • Mohsen Alishahiha
  • Amin Faraji Astaneh
  • M. Reza Mohammadi Mozaffar
  • Ali Mollabashi
Open Access
Regular Article - Theoretical Physics

Abstract

Using “complexity=action” proposal we study the growth rate of holographic complexity for Lifshitz and hyperscaling violating geometries. We will consider both one and two sided black branes in an Einstein-Maxwell-Dilaton gravitational theory. We find that in either case Lloyd’s bound is violated and the rate of growth of complexity saturate to a value which is greater than twice the mass of the corresponding black brane. This value reduces to the mass of the black brane in the isotropic case. We show that in two sided black brane the saturation happens from above while for one sided black brane it happens from below.

Keywords

AdS-CFT Correspondence Black Holes Gauge-gravity correspondence Space-Time Symmetries 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    L. Susskind, Computational complexity and black hole horizons, Fortsch. Phys. 64 (2016) 44 [arXiv:1403.5695] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    D. Stanford and L. Susskind, Complexity and shock wave geometries, Phys. Rev. D 90 (2014) 126007 [arXiv:1406.2678] [INSPIRE].
  4. [4]
    A.R. Brown et al., Holographic complexity equals bulk action?, Phys. Rev. Lett. 116 (2016) 191301 [arXiv:1509.07876] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    A.R. Brown et al., Complexity, action and black holes, Phys. Rev. D 93 (2016) 086006 [arXiv:1512.04993] [INSPIRE].
  6. [6]
    M. Alishahiha, Holographic complexity, Phys. Rev. D 92 (2015) 126009 [arXiv:1509.06614] [INSPIRE].ADSMathSciNetGoogle Scholar
  7. [7]
    O. Ben-Ami and D. Carmi, On volumes of subregions in holography and complexity, JHEP 11 (2016) 129 [arXiv:1609.02514] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    J. Couch, W. Fischler and P.H. Nguyen, Noether charge, black hole volume and complexity, JHEP 03 (2017) 119 [arXiv:1610.02038] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    D. Carmi, R.C. Myers and P. Rath, Comments on holographic complexity, JHEP 03 (2017) 118 [arXiv:1612.00433] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    E. Bakhshaei, A. Mollabashi and A. Shirzad, Holographic subregion complexity for singular surfaces, Eur. Phys. J. C 77 (2017) 665 [arXiv:1703.03469] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    S. Lloyd, Ultimate physical limits to computation, Nature 406 (2000) 1047 [quant-ph/9908043].
  12. [12]
    D. Carmi et al., On the time dependence of holographic complexity, JHEP 11 (2017) 188 [arXiv:1709.10184] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    M. Ghodrati, Complexity growth in massive gravity theories, the effects of chirality and more, Phys. Rev. D 96 (2017) 106020 [arXiv:1708.07981] [INSPIRE].ADSGoogle Scholar
  14. [14]
    R.-Q. Yang, C. Niu, C.-Y. Zhang and K.-Y. Kim, Comparison of holographic and field theoretic complexities for time dependent thermofield double states, JHEP 02 (2018) 082 [arXiv:1710.00600] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    M. Moosa, Divergences in the rate of complexification, Phys. Rev. D 97 (2018) 106016 [arXiv:1712.07137] [INSPIRE].ADSGoogle Scholar
  16. [16]
    M. Moosa, Evolution of complexity following a global quench, JHEP 03 (2018) 031 [arXiv:1711.02668] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  17. [17]
    B. Gouteraux and E. Kiritsis, Generalized holographic quantum criticality at finite density, JHEP 12 (2011) 036 [arXiv:1107.2116] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  18. [18]
    L. Huijse, S. Sachdev and B. Swingle, Hidden Fermi surfaces in compressible states of gauge-gravity duality, Phys. Rev. B 85 (2012) 035121 [arXiv:1112.0573] [INSPIRE].
  19. [19]
    M. Alishahiha, E. O Colgain and H. Yavartanoo, Charged black branes with hyperscaling violating factor, JHEP 11 (2012) 137 [arXiv:1209.3946] [INSPIRE].
  20. [20]
    A. Salvio, Transitions in dilaton holography with global or local symmetries, JHEP 03 (2013) 136 [arXiv:1302.4898] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    B. Swingle and Y. Wang, Holographic complexity of Einstein-Maxwell-dilaton gravity, arXiv:1712.09826 [INSPIRE].
  22. [22]
    Y.-S. An and R.-H. Peng, Effect of the dilaton on holographic complexity growth, Phys. Rev. D 97 (2018) 066022 [arXiv:1801.03638] [INSPIRE].
  23. [23]
    K. Parattu, S. Chakraborty, B.R. Majhi and T. Padmanabhan, A boundary term for the gravitational action with null boundaries, Gen. Rel. Grav. 48 (2016) 94 [arXiv:1501.01053] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  24. [24]
    L. Lehner, R.C. Myers, E. Poisson and R.D. Sorkin, Gravitational action with null boundaries, Phys. Rev. D 94 (2016) 084046 [arXiv:1609.00207] [INSPIRE].
  25. [25]
    M. Taylor, Non-relativistic holography, arXiv:0812.0530 [INSPIRE].
  26. [26]
    X. Dong, S. Harrison, S. Kachru, G. Torroba and H. Wang, Aspects of holography for theories with hyperscaling violation, JHEP 06 (2012) 041 [arXiv:1201.1905] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    M.H. Dehghani, A. Sheykhi and S.E. Sadati, Thermodynamics of nonlinear charged Lifshitz black branes with hyperscaling violation, Phys. Rev. D 91 (2015) 124073 [arXiv:1505.01134] [INSPIRE].ADSMathSciNetGoogle Scholar
  28. [28]
    M. Henningson and K. Skenderis, The holographic Weyl anomaly, JHEP 07 (1998) 023 [hep-th/9806087] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  29. [29]
    A. Akhavan, M. Alsihahiha and F. Omidi, Complexity and counter terms, to appear.Google Scholar
  30. [30]
    M. Alishahiha, A. Faraji Astaneh and M.R. Mohammadi Mozaffar, Thermalization in backgrounds with hyperscaling violating factor, Phys. Rev. D 90 (2014) 046004 [arXiv:1401.2807] [INSPIRE].
  31. [31]
    A. Reynolds and S.F. Ross, Divergences in holographic complexity, Class. Quant. Grav. 34 (2017) 105004 [arXiv:1612.05439] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  32. [32]
    M. Alishahiha and H. Yavartanoo, On holography with hyperscaling violation, JHEP 11 (2012) 034 [arXiv:1208.6197] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    R. Jefferson and R.C. Myers, Circuit complexity in quantum field theory, JHEP 10 (2017) 107 [arXiv:1707.08570] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  34. [34]
    S. Chapman, M.P. Heller, H. Marrochio and F. Pastawski, Toward a definition of complexity for quantum field theory states, Phys. Rev. Lett. 120 (2018) 121602 [arXiv:1707.08582] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  35. [35]
    R. Khan, C. Krishnan and S. Sharma, Circuit complexity in fermionic field theory, arXiv:1801.07620 [INSPIRE].

Copyright information

© The Author(s) 2018

Authors and Affiliations

  • Mohsen Alishahiha
    • 1
  • Amin Faraji Astaneh
    • 2
    • 3
  • M. Reza Mohammadi Mozaffar
    • 1
  • Ali Mollabashi
    • 1
  1. 1.School of Physics, Institute for Research in Fundamental Sciences (IPM)TehranIran
  2. 2.Physics Department, Faculty of SciencesArak UniversityArakIran
  3. 3.School of Particles and Accelerators, Institute for Research in Fundamental Sciences (IPM)TehranIran

Personalised recommendations