Comments on the SN orbifold CFT in the large N-limit

  • Konstantinos Roumpedakis
Open Access
Regular Article - Theoretical Physics


We elaborate on various aspects of the conformal field theory of the symmetric orbifold. We collect various results that have appeared in the literature, and we present a coherent picture of the operator content of this CFT, relying on the orbifold extension of the Virasoro algebra. We then focus on the large N-limit of this theory, discuss the OPE of two twist operators, and find various selection rules. We review how to calculate four-point functions of twist operators, and we write down the most general four-point function in the covering space for large N.We show that it depends on some functions that obey a set of algebraic equations, that resemble the scattering equations. Finally, we provide a recipe on how to calculate correlation functions with insertions of the orbifold Virasoro generators.


Conformal and W Symmetry Conformal Field Theory Field Theories in Lower Dimensions 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    L.J. Dixon, J.A. Harvey, C. Vafa and E. Witten, Strings on Orbifolds, Nucl. Phys. B 261 (1985) 678 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  2. [2]
    L.J. Dixon, D. Friedan, E.J. Martinec and S.H. Shenker, The Conformal Field Theory of Orbifolds, Nucl. Phys. B 282 (1987) 13 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  3. [3]
    C. Vafa and E. Witten, A Strong coupling test of S duality, Nucl. Phys. B 431 (1994) 3 [hep-th/9408074] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    A. Strominger and C. Vafa, Microscopic origin of the Bekenstein-Hawking entropy, Phys. Lett. B 379 (1996) 99 [hep-th/9601029] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    R. Dijkgraaf, G.W. Moore, E.P. Verlinde and H.L. Verlinde, Elliptic genera of symmetric products and second quantized strings, Commun. Math. Phys. 185 (1997) 197 [hep-th/9608096] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    L. Motl, Proposals on nonperturbative superstring interactions, hep-th/9701025 [INSPIRE].
  7. [7]
    R. Dijkgraaf, E.P. Verlinde and H.L. Verlinde, Matrix string theory, Nucl. Phys. B 500 (1997) 43 [hep-th/9703030] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    R. Dijkgraaf, Fields, strings, matrices and symmetric products, hep-th/9912104 [INSPIRE].
  9. [9]
    J.M. Maldacena, The large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [hep-th/9711200] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    J. de Boer, Six-dimensional supergravity on S 3 × AdS 3 and 2-D conformal field theory, Nucl. Phys. B 548 (1999) 139 [hep-th/9806104] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    R. Dijkgraaf, Instanton strings and hyperKähler geometry, Nucl. Phys. B 543 (1999) 545 [hep-th/9810210] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  12. [12]
    N. Seiberg and E. Witten, The D1/D5 system and singular CFT, JHEP 04 (1999) 017 [hep-th/9903224] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    F. Larsen and E.J. Martinec, U(1) charges and moduli in the D1-D5 system, JHEP 06 (1999) 019 [hep-th/9905064] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    O. Lunin and S.D. Mathur, Rotating deformations of AdS 3 × S 3 , the orbifold CFT and strings in the pp wave limit, Nucl. Phys. B 642 (2002) 91 [hep-th/0206107] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  15. [15]
    J. Gomis, L. Motl and A. Strominger, PP wave/CFT 2 duality, JHEP 11 (2002) 016 [hep-th/0206166] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    E. Gava and K.S. Narain, Proving the PP wave/CFT 2 duality, JHEP 12 (2002) 023 [hep-th/0208081] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    M.R. Gaberdiel and I. Kirsch, Worldsheet correlators in AdS 3 /CFT 2, JHEP 04 (2007) 050 [hep-th/0703001] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    A. Dabholkar and A. Pakman, Exact chiral ring of AdS 3 /CFT 2, Adv. Theor. Math. Phys. 13 (2009) 409 [hep-th/0703022] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    A. Pakman and A. Sever, Exact N = 4 correlators of AdS 3 /CFT 2, Phys. Lett. B 652 (2007) 60 [arXiv:0704.3040] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  20. [20]
    M. Taylor, Matching of correlators in AdS 3 /CFT 2, JHEP 06 (2008) 010 [arXiv:0709.1838] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    G. Giribet and L. Nicolas, Comment on three-point function in AdS 3 /CFT 2, J. Math. Phys. 50 (2009) 042304 [arXiv:0812.2732] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  23. [23]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  24. [24]
    O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri and Y. Oz, Large N field theories, string theory and gravity, Phys. Rept. 323 (2000) 183 [hep-th/9905111] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. [25]
    M.R. Gaberdiel and R. Gopakumar, Higher Spins & Strings, JHEP 11 (2014) 044 [arXiv:1406.6103] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  26. [26]
    F.M. Haehl and M. Rangamani, Permutation orbifolds and holography, JHEP 03 (2015) 163 [arXiv:1412.2759] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  27. [27]
    A. Belin, C.A. Keller and A. Maloney, String Universality for Permutation Orbifolds, Phys. Rev. D 91 (2015) 106005 [arXiv:1412.7159] [INSPIRE].ADSMathSciNetGoogle Scholar
  28. [28]
    M.R. Gaberdiel and R. Gopakumar, Stringy Symmetries and the Higher Spin Square, J. Phys. A 48 (2015) 185402 [arXiv:1501.07236] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  29. [29]
    M. Baggio, M.R. Gaberdiel and C. Peng, Higher spins in the symmetric orbifold of K3, Phys. Rev. D 92 (2015) 026007 [arXiv:1504.00926] [INSPIRE].ADSMathSciNetGoogle Scholar
  30. [30]
    A. Belin, C.A. Keller and A. Maloney, Permutation Orbifolds in the large N Limit, Annales Henri Poincaré (2016) 1 [arXiv:1509.01256] [INSPIRE].
  31. [31]
    A. Jevicki and J. Yoon, S N Orbifolds and String Interactions, J. Phys. A 49 (2016) 205401 [arXiv:1511.07878] [INSPIRE].ADSzbMATHGoogle Scholar
  32. [32]
    L. Borisov, M.B. Halpern and C. Schweigert, Systematic approach to cyclic orbifolds, Int. J. Mod. Phys. A 13 (1998) 125 [hep-th/9701061] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  33. [33]
    F. Cachazo, S. He and E.Y. Yuan, Scattering in Three Dimensions from Rational Maps, JHEP 10 (2013) 141 [arXiv:1306.2962] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    F. Cachazo, S. He and E.Y. Yuan, Scattering equations and Kawai-Lewellen-Tye orthogonality, Phys. Rev. D 90 (2014) 065001 [arXiv:1306.6575] [INSPIRE].ADSGoogle Scholar
  35. [35]
    O. Lunin and S.D. Mathur, Three point functions for M N /S N orbifolds with N = 4 supersymmetry, Commun. Math. Phys. 227 (2002) 385 [hep-th/0103169] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  36. [36]
    A. Jevicki, M. Mihailescu and S. Ramgoolam, Gravity from CFT on S N(X): Symmetries and interactions, Nucl. Phys. B 577 (2000) 47 [hep-th/9907144] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  37. [37]
    G.E. Arutyunov and S.A. Frolov, Virasoro amplitude from the S N R 24 orbifold σ-model, Theor. Math. Phys. 114 (1998) 43 [hep-th/9708129] [INSPIRE].CrossRefGoogle Scholar
  38. [38]
    G. Arutyunov, S. Frolov and A. Polishchuk, On Lorentz invariance and supersymmetry of four particle scattering amplitudes in S N R 8 orbifold σ-model, Phys. Rev. D 60 (1999) 066003 [hep-th/9812119] [INSPIRE].ADSGoogle Scholar
  39. [39]
    O. Lunin and S.D. Mathur, Correlation functions for M N /S N orbifolds, Commun. Math. Phys. 219 (2001) 399 [hep-th/0006196] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  40. [40]
    A. Pakman, L. Rastelli and S.S. Razamat, Diagrams for Symmetric Product Orbifolds, JHEP 10 (2009) 034 [arXiv:0905.3448] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  41. [41]
    B.A. Burrington, A.W. Peet and I.G. Zadeh, Operator mixing for string states in the D1-D5 CFT near the orbifold point, Phys. Rev. D 87 (2013) 106001 [arXiv:1211.6699] [INSPIRE].ADSGoogle Scholar
  42. [42]
    A. Klemm and M.G. Schmidt, Orbifolds by Cyclic Permutations of Tensor Product Conformal Field Theories, Phys. Lett. B 245 (1990) 53 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  43. [43]
    J. Fuchs, A. Klemm and M.G. Schmidt, Orbifolds by cyclic permutations in Gepner type superstrings and in the corresponding Calabi-Yau manifolds, Annals Phys. 214 (1992) 221 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  44. [44]
    P. Bantay, Symmetric products, permutation orbifolds and discrete torsion, Lett. Math. Phys. 63 (2003) 209 [hep-th/0004025] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  45. [45]
    B.A. Burrington, A.W. Peet and I.G. Zadeh, Twist-nontwist correlators in M N /S N orbifold CFTs, Phys. Rev. D 87 (2013) 106008 [arXiv:1211.6689] [INSPIRE].ADSGoogle Scholar
  46. [46]
    D. Friedan, Introduction To Polyakov’s String Theory, (1982) [INSPIRE].
  47. [47]
    A.M. Polyakov, Quantum Geometry of Bosonic Strings, Phys. Lett. B 103 (1981) 207 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  48. [48]
    A.B. Zamolodchikov, Conformal symmetry in two-dimensions: an explicit recurrence formula for the conformal partial wave amplitude, Commun. Math. Phys. 96 (1984) 419 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  49. [49]
    A.B. Zamolodchikov, Conformal Symmetry in Two-Dimensional Space: Recursion Representation of Conformal Blocks, Theor. Math. Phys. 73 (1987) 1088.CrossRefGoogle Scholar
  50. [50]
    S. Lando, R. Gamkrelidze, V. Vassiliev and A. Zvonkin, Graphs on Surfaces and Their Applications, Encyclopaedia of Mathematical Sciences, Springer Berlin Heidelberg (2003).Google Scholar
  51. [51]
    J.J. Atick, L.J. Dixon, P.A. Griffin and D. Nemeschansky, Multiloop Twist Field Correlation Functions for Z(N) Orbifolds, Nucl. Phys. B 298 (1988) 1 [INSPIRE].ADSMathSciNetGoogle Scholar
  52. [52]
    A. Pakman, L. Rastelli and S.S. Razamat, Extremal Correlators and Hurwitz Numbers in Symmetric Product Orbifolds, Phys. Rev. D 80 (2009) 086009 [arXiv:0905.3451] [INSPIRE].ADSGoogle Scholar
  53. [53]
    G. Mack, D-dimensional Conformal Field Theories with anomalous dimensions as Dual Resonance Models, Bulg. J. Phys. 36 (2009) 214 [arXiv:0909.1024] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  54. [54]
    G. Mack, D-independent representation of Conformal Field Theories in D dimensions via transformation to auxiliary Dual Resonance Models. Scalar amplitudes, arXiv:0907.2407 [INSPIRE].
  55. [55]
    J. Penedones, Writing CFT correlation functions as AdS scattering amplitudes, JHEP 03 (2011) 025 [arXiv:1011.1485] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  56. [56]
    L. Rastelli and X. Zhou, How to Succeed at Holographic Correlators Without Really Trying, JHEP 04 (2018) 014 [arXiv:1710.05923] [INSPIRE].CrossRefzbMATHGoogle Scholar
  57. [57]
    S. Caron-Huot, Analyticity in Spin in Conformal Theories, JHEP 09 (2017) 078 [arXiv:1703.00278] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  58. [58]
    D. Simmons-Duffin, D. Stanford and E. Witten, A spacetime derivation of the Lorentzian OPE inversion formula, arXiv:1711.03816 [INSPIRE].
  59. [59]
    H. Osborn, Conformal Blocks for Arbitrary Spins in Two Dimensions, Phys. Lett. B 718 (2012) 169 [arXiv:1205.1941] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  60. [60]
    B.A. Burrington, I.T. Jardine and A.W. Peet, The OPE of bare twist operators in bosonic S N orbifold CFTs at large N, arXiv:1804.01562 [INSPIRE].

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.C.N. Yang Institute for Theoretical PhysicsStony Brook UniversityStony BrookU.S.A.

Personalised recommendations