Advertisement

Neutrino discovery limit of Dark Matter direct detection experiments in the presence of non-standard interactions

  • M. C. Gonzalez-Garcia
  • Michele Maltoni
  • Yuber F. Perez-Gonzalez
  • Renata Zukanovich Funchal
Open Access
Regular Article - Theoretical Physics

Abstract

The detection of coherent neutrino-nucleus scattering by the COHERENT collaboration has set on quantitative grounds the existence of an irreducible neutrino background in direct detection searches of Weakly Interacting Massive Dark Matter candidates. This background leads to an ultimate discovery limit for these experiments: a minimum Dark Matter interaction cross section below which events produced by the coherent neutrino scattering will mimic the Dark Matter signal, the so-called neutrino floor. In this work we study the modification of such neutrino floor induced by non-standard neutrino interactions within their presently allowed values by the global analysis of oscillation and COHERENT data. By using the full likelihood information of such global analysis we consistently account for the correlated effects of non-standard neutrino interactions both in the neutrino propagation in matter and in its interaction in the detector. We quantify their impact on the neutrino floor for five future experiments: DARWIN (Xe), ARGO (Ar), Super-CDMS HV (Ge and Si) and CRESST phase III (CaWO4). Quantitatively, we find that non-standard neutrino interactions allowed at the 3σ level can result in an increase of the neutrino floor of up to a factor ∼ 5 with respect to the Standard Model expectations and impact the expected sensitivities of the ARGO, CRESST phase III and DARWIN experiments.

Keywords

Beyond Standard Model Neutrino Physics Solar and Atmospheric Neutrinos 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    J.L. Feng, Dark Matter Candidates from Particle Physics and Methods of Detection, Ann. Rev. Astron. Astrophys. 48 (2010) 495 [arXiv:1003.0904] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    M.C. Gonzalez-Garcia and M. Maltoni, Phenomenology with Massive Neutrinos, Phys. Rept. 460 (2008) 1 [arXiv:0704.1800] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    D.Z. Freedman, Coherent Neutrino Nucleus Scattering as a Probe of the Weak Neutral Current, Phys. Rev. D 9 (1974) 1389 [INSPIRE].ADSGoogle Scholar
  4. [4]
    J. Billard, L. Strigari and E. Figueroa-Feliciano, Implication of neutrino backgrounds on the reach of next generation dark matter direct detection experiments, Phys. Rev. D 89 (2014) 023524 [arXiv:1307.5458] [INSPIRE].ADSGoogle Scholar
  5. [5]
    XENON collaboration, E. Aprile et al., Physics reach of the XENON1T dark matter experiment, JCAP 04 (2016) 027 [arXiv:1512.07501] [INSPIRE].
  6. [6]
    CRESST collaboration, G. Angloher et al., Probing low WIMP masses with the next generation of CRESST detector, arXiv:1503.08065 [INSPIRE].
  7. [7]
    DARWIN collaboration, J. Aalbers et al., DARWIN: towards the ultimate dark matter detector, JCAP 11 (2016) 017 [arXiv:1606.07001] [INSPIRE].
  8. [8]
    SuperCDMS collaboration, R. Agnese et al., Projected Sensitivity of the SuperCDMS SNOLAB experiment, Phys. Rev. D 95 (2017) 082002 [arXiv:1610.00006] [INSPIRE].
  9. [9]
    C.E. Aalseth et al., DarkSide-20k: A 20 tonne two-phase LAr TPC for direct dark matter detection at LNGS, Eur. Phys. J. Plus 133 (2018) 131 [arXiv:1707.08145] [INSPIRE].CrossRefGoogle Scholar
  10. [10]
    B.J. Mount et al., LUX-ZEPLIN (LZ) Technical Design Report, arXiv:1703.09144 [INSPIRE].
  11. [11]
    R. Essig, M. Sholapurkar and T.-T. Yu, Solar Neutrinos as a Signal and Background in Direct-Detection Experiments Searching for Sub-GeV Dark Matter With Electron Recoils, Phys. Rev. D 97 (2018) 095029 [arXiv:1801.10159] [INSPIRE].ADSGoogle Scholar
  12. [12]
    COHERENT collaboration, D. Akimov et al., Observation of Coherent Elastic Neutrino-Nucleus Scattering, Science 357 (2017) 1123 [arXiv:1708.01294] [INSPIRE].
  13. [13]
    R. Harnik, J. Kopp and P.A.N. Machado, Exploring nu Signals in Dark Matter Detectors, JCAP 07 (2012) 026 [arXiv:1202.6073] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    E. Bertuzzo, F.F. Deppisch, S. Kulkarni, Y.F. Perez Gonzalez and R. Zukanovich Funchal, Dark Matter and Exotic Neutrino Interactions in Direct Detection Searches, JHEP 04 (2017) 073 [Erratum ibid. 04 (2017) 073] [arXiv:1701.07443] [INSPIRE].
  15. [15]
    B. Dutta, S. Liao, L.E. Strigari and J.W. Walker, Non-standard interactions of solar neutrinos in dark matter experiments, Phys. Lett. B 773 (2017) 242 [arXiv:1705.00661] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    D. Aristizabal Sierra, N. Rojas and M.H.G. Tytgat, Neutrino non-standard interactions and dark matter searches with multi-ton scale detectors, JHEP 03 (2018) 197 [arXiv:1712.09667] [INSPIRE].CrossRefGoogle Scholar
  17. [17]
    B. Pontecorvo, Neutrino Experiments and the Problem of Conservation of Leptonic Charge, Sov. Phys. JETP 26 (1968) 984 [INSPIRE].ADSGoogle Scholar
  18. [18]
    Z. Maki, M. Nakagawa and S. Sakata, Remarks on the unified model of elementary particles, Prog. Theor. Phys. 28 (1962) 870 [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  19. [19]
    M. Kobayashi and T. Maskawa, CP Violation in the Renormalizable Theory of Weak Interaction, Prog. Theor. Phys. 49 (1973) 652 [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    M.C. Gonzalez-Garcia, M. Maltoni and J. Salvado, Testing matter effects in propagation of atmospheric and long-baseline neutrinos, JHEP 05 (2011) 075 [arXiv:1103.4365] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  21. [21]
    M.C. Gonzalez-Garcia and M. Maltoni, Determination of matter potential from global analysis of neutrino oscillation data, JHEP 09 (2013) 152 [arXiv:1307.3092] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    P. Bakhti and Y. Farzan, Shedding light on LMA-Dark solar neutrino solution by medium baseline reactor experiments: JUNO and RENO-50, JHEP 07 (2014) 064 [arXiv:1403.0744] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    P. Coloma and T. Schwetz, Generalized mass ordering degeneracy in neutrino oscillation experiments, Phys. Rev. D 94 (2016) 055005 [arXiv:1604.05772] [INSPIRE].ADSGoogle Scholar
  24. [24]
    O.G. Miranda, M.A. Tortola and J.W.F. Valle, Are solar neutrino oscillations robust?, JHEP 10 (2006) 008 [hep-ph/0406280] [INSPIRE].
  25. [25]
    KamLAND collaboration, A. Gando et al., Constraints on θ 13 from A Three-Flavor Oscillation Analysis of Reactor Antineutrinos at KamLAND, Phys. Rev. D 83 (2011) 052002 [arXiv:1009.4771] [INSPIRE].
  26. [26]
    B.T. Cleveland et al., Measurement of the solar electron neutrino flux with the Homestake chlorine detector, Astrophys. J. 496 (1998) 505 [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    F. Kaether, W. Hampel, G. Heusser, J. Kiko and T. Kirsten, Reanalysis of the GALLEX solar neutrino flux and source experiments, Phys. Lett. B 685 (2010) 47 [arXiv:1001.2731] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    SAGE collaboration, J.N. Abdurashitov et al., Measurement of the solar neutrino capture rate with gallium metal. III: Results for the 2002–2007 data-taking period, Phys. Rev. C 80 (2009) 015807 [arXiv:0901.2200] [INSPIRE].
  29. [29]
    Super-Kamiokande collaboration, J. Hosaka et al., Solar neutrino measurements in Super-Kamiokande-I, Phys. Rev. D 73 (2006) 112001 [hep-ex/0508053] [INSPIRE].
  30. [30]
    Super-Kamiokande collaboration, J.P. Cravens et al., Solar neutrino measurements in Super-Kamiokande-II, Phys. Rev. D 78 (2008) 032002 [arXiv:0803.4312] [INSPIRE].
  31. [31]
    Super-Kamiokande collaboration, K. Abe et al., Solar neutrino results in Super-Kamiokande-III, Phys. Rev. D 83 (2011) 052010 [arXiv:1010.0118] [INSPIRE].
  32. [32]
    M.B. Smy, Super-Kamiokandes Solar ν Results, in XXV International Conference on Neutrino Physics, June (2012).Google Scholar
  33. [33]
    L.K. Pik, Study of the neutrino mass hierarchy with the atmospheric neutrino data observed in Super-Kamiokande, Ph.D. Thesis, Tokyo University, (2012).Google Scholar
  34. [34]
    G. Bellini et al., Precision measurement of the 7 Be solar neutrino interaction rate in Borexino, Phys. Rev. Lett. 107 (2011) 141302 [arXiv:1104.1816] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    Borexino collaboration, G. Bellini et al., Measurement of the solar 8 B neutrino rate with a liquid scintillator target and 3 MeV energy threshold in the Borexino detector, Phys. Rev. D 82 (2010) 033006 [arXiv:0808.2868] [INSPIRE].
  36. [36]
    SNO collaboration, B. Aharmim et al., Determination of the ν e and total 8 B solar neutrino fluxes with the Sudbury neutrino observatory phase I data set, Phys. Rev. C 75 (2007) 045502 [nucl-ex/0610020] [INSPIRE].
  37. [37]
    SNO collaboration, B. Aharmim et al., Electron energy spectra, fluxes and day-night asymmetries of 8 B solar neutrinos from measurements with NaCl dissolved in the heavy-water detector at the Sudbury Neutrino Observatory, Phys. Rev. C 72 (2005) 055502 [nucl-ex/0502021] [INSPIRE].
  38. [38]
    SNO collaboration, B. Aharmim et al., An Independent Measurement of the Total Active B-8 Solar Neutrino Flux Using an Array of He-3 Proportional Counters at the Sudbury Neutrino Observatory, Phys. Rev. Lett. 101 (2008) 111301 [arXiv:0806.0989] [INSPIRE].
  39. [39]
    SNO collaboration, B. Aharmim et al., Combined Analysis of all Three Phases of Solar Neutrino Data from the Sudbury Neutrino Observatory, Phys. Rev. C 88 (2013) 025501 [arXiv:1109.0763] [INSPIRE].
  40. [40]
    L. Pik, Study of the neutrino mass hierarchy with the atmospheric neutrino data observed in super-kamiokande, Ph.D. Thesis, Tokyo University, (2012).Google Scholar
  41. [41]
    MINOS collaboration, P. Adamson et al., Measurement of Neutrino and Antineutrino Oscillations Using Beam and Atmospheric Data in MINOS, Phys. Rev. Lett. 110 (2013) 251801 [arXiv:1304.6335] [INSPIRE].
  42. [42]
    MINOS collaboration, P. Adamson et al., Electron neutrino and antineutrino appearance in the full MINOS data sample, Phys. Rev. Lett. 110 (2013) 171801 [arXiv:1301.4581] [INSPIRE].
  43. [43]
    M. Ikeda, Recent results from t2k, in Reecontres de Moriond EW, March (2013).Google Scholar
  44. [44]
    CHOOZ collaboration, M. Apollonio et al., Limits on neutrino oscillations from the CHOOZ experiment, Phys. Lett. B 466 (1999) 415 [hep-ex/9907037] [INSPIRE].
  45. [45]
    Palo Verde collaboration, A. Piepke, Final results from the Palo Verde neutrino oscillation experiment, Prog. Part. Nucl. Phys. 48 (2002) 113 [INSPIRE].
  46. [46]
    Double CHOOZ collaboration, Y. Abe et al., Reactor electron antineutrino disappearance in the Double CHOOZ experiment, Phys. Rev. D 86 (2012) 052008 [arXiv:1207.6632] [INSPIRE].
  47. [47]
    Daya Bay collaboration, F.P. An et al., Improved Measurement of Electron Antineutrino Disappearance at Daya Bay, Chin. Phys. C 37 (2013) 011001 [arXiv:1210.6327] [INSPIRE].
  48. [48]
    S.H. Seo, New results from reno, in XV International Workshop on Neutrino Telescopes, March (2013).Google Scholar
  49. [49]
    Y. Declais et al., Study of reactor anti-neutrino interaction with proton at Bugey nuclear power plant, Phys. Lett. B 338 (1994) 383 [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    Y. Declais et al., Search for neutrino oscillations at 15-meters, 40-meters and 95-meters from a nuclear power reactor at Bugey, Nucl. Phys. B 434 (1995) 503 [INSPIRE].ADSGoogle Scholar
  51. [51]
    A.A. Kuvshinnikov, L.A. Mikaelyan, S.V. Nikolaev, M.D. Skorokhvatov and A.V. Etenko, Measuring the \( {\overline{\nu}}_e+P\to N+{e}^{+} \) cross-section and beta decay axial constant in a new experiment at Rovno NPP reactor (in Russian), JETP Lett. 54 (1991) 253 [INSPIRE].
  52. [52]
    A.I. Afonin, S.N. Ketov, V.I. Kopeikin, L.A. Mikaelyan, M.D. Skorokhvatov and S.V. Tolokonnikov, A Study of the Reaction \( {\overline{\nu}}_e+P\to {e}^{+}+N \) on a Nuclear Reactor, Sov. Phys. JETP 67 (1988) 213 [INSPIRE].
  53. [53]
    G.S. Vidyakin et al., Detection of Anti-neutrinos in the Flux From Two Reactors, Sov. Phys. JETP 66 (1987) 243 [INSPIRE].Google Scholar
  54. [54]
    G.S. Vidyakin et al., Limitations on the characteristics of neutrino oscillations, JETP Lett. 59 (1994) 390 [INSPIRE].ADSGoogle Scholar
  55. [55]
    H. Kwon et al., Search for Neutrino Oscillations at a Fission Reactor, Phys. Rev. D 24 (1981) 1097 [INSPIRE].ADSGoogle Scholar
  56. [56]
    CALTECH-SIN-TUM collaboration, G. Zacek et al., Neutrino Oscillation Experiments at the Gosgen Nuclear Power Reactor, Phys. Rev. D 34 (1986) 2621 [INSPIRE].
  57. [57]
    Z.D. Greenwood et al., Results of a two position reactor neutrino oscillation experiment, Phys. Rev. D 53 (1996) 6054 [INSPIRE].ADSGoogle Scholar
  58. [58]
    A. Friedland, C. Lunardini and M. Maltoni, Atmospheric neutrinos as probes of neutrino-matter interactions, Phys. Rev. D 70 (2004) 111301 [hep-ph/0408264] [INSPIRE].
  59. [59]
    M.B. Gavela, D. Hernandez, T. Ota and W. Winter, Large gauge invariant non-standard neutrino interactions, Phys. Rev. D 79 (2009) 013007 [arXiv:0809.3451] [INSPIRE].ADSGoogle Scholar
  60. [60]
    S. Antusch, J.P. Baumann and E. Fernandez-Martinez, Non-Standard Neutrino Interactions with Matter from Physics Beyond the Standard Model, Nucl. Phys. B 810 (2009) 369 [arXiv:0807.1003] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  61. [61]
    S. Davidson and V. Sanz, Non-Standard Neutrino Interactions at Colliders, Phys. Rev. D 84 (2011) 113011 [arXiv:1108.5320] [INSPIRE].ADSGoogle Scholar
  62. [62]
    Y. Farzan, A model for large non-standard interactions of neutrinos leading to the LMA-Dark solution, Phys. Lett. B 748 (2015) 311 [arXiv:1505.06906] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  63. [63]
    Y. Farzan and I.M. Shoemaker, Lepton Flavor Violating Non-Standard Interactions via Light Mediators, JHEP 07 (2016) 033 [arXiv:1512.09147] [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    K.S. Babu, A. Friedland, P.A.N. Machado and I. Mocioiu, Flavor Gauge Models Below the Fermi Scale, JHEP 12 (2017) 096 [arXiv:1705.01822] [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
    O.G. Miranda and H. Nunokawa, Non standard neutrino interactions: current status and future prospects, New J. Phys. 17 (2015) 095002 [arXiv:1505.06254] [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    CHARM collaboration, J. Dorenbosch et al., Experimental Verification of the Universality of ν e and ν μ Coupling to the Neutral Weak Current, Phys. Lett. B 180 (1986) 303 [INSPIRE].
  67. [67]
    NuTeV collaboration, G.P. Zeller et al., A precise determination of electroweak parameters in neutrino nucleon scattering, Phys. Rev. Lett. 88 (2002) 091802 [Erratum ibid. 90 (2003) 239902] [hep-ex/0110059] [INSPIRE].
  68. [68]
    J. Barranco, O.G. Miranda and T.I. Rashba, Probing new physics with coherent neutrino scattering off nuclei, JHEP 12 (2005) 021 [hep-ph/0508299] [INSPIRE].
  69. [69]
    J.D. Lewin and P.F. Smith, Review of mathematics, numerical factors and corrections for dark matter experiments based on elastic nuclear recoil, Astropart. Phys. 6 (1996) 87 [INSPIRE].ADSCrossRefGoogle Scholar
  70. [70]
    P. Coloma, M.C. Gonzalez-Garcia, M. Maltoni and T. Schwetz, COHERENT enlightenment of the neutrino dark side, Phys. Rev. D 96 (2017) 115007 [arXiv:1708.02899] [INSPIRE].ADSGoogle Scholar
  71. [71]
    I. Esteban, M.C. Gonzalez-Garcia, M. Maltoni, I. Martinez-Soler and T. Schwetz, Updated fit to three neutrino mixing: exploring the accelerator-reactor complementarity, JHEP 01 (2017) 087 [arXiv:1611.01514] [INSPIRE].ADSCrossRefGoogle Scholar
  72. [72]
    J.F. Beacom, The Diffuse Supernova Neutrino Background, Ann. Rev. Nucl. Part. Sci. 60 (2010) 439 [arXiv:1004.3311] [INSPIRE].ADSCrossRefGoogle Scholar
  73. [73]
    F. Ruppin, J. Billard, E. Figueroa-Feliciano and L. Strigari, Complementarity of dark matter detectors in light of the neutrino background, Phys. Rev. D 90 (2014) 083510 [arXiv:1408.3581] [INSPIRE].ADSGoogle Scholar
  74. [74]
    C.A. O’Hare, Dark matter astrophysical uncertainties and the neutrino floor, Phys. Rev. D 94 (2016) 063527 [arXiv:1604.03858] [INSPIRE].ADSGoogle Scholar
  75. [75]
    Y.F. Perez-Gonzalez, Massive Neutrinos: Phenomenological and Cosmological Consequences, Ph.D. thesis, Sao Paulo U., 2017. arXiv:1712.06675 [INSPIRE].
  76. [76]
    N. Vinyoles et al., A new Generation of Standard Solar Models, Astrophys. J. 835 (2017) 202 [arXiv:1611.09867] [INSPIRE].ADSCrossRefGoogle Scholar
  77. [77]
    T.-K. Kuo and J.T. Pantaleone, The Solar Neutrino Problem and Three Neutrino Oscillations, Phys. Rev. Lett. 57 (1986) 1805 [INSPIRE].ADSCrossRefGoogle Scholar
  78. [78]
    M.M. Guzzo, H. Nunokawa, P.C. de Holanda and O.L.G. Peres, On the masslessjust-sosolution to the solar neutrino problem, Phys. Rev. D 64 (2001) 097301 [hep-ph/0012089] [INSPIRE].
  79. [79]
    G. Battistoni, A. Ferrari, T. Montaruli and P.R. Sala, The atmospheric neutrino flux below 100-MeV: The FLUKA results, Astropart. Phys. 23 (2005) 526 [INSPIRE].ADSCrossRefGoogle Scholar
  80. [80]
    O.L.G. Peres and A. Yu. Smirnov, Atmospheric neutrinos: LMA oscillations, U(e3) induced interference and CP-violation, Nucl. Phys. B 680 (2004) 479 [hep-ph/0309312] [INSPIRE].
  81. [81]
    O.L.G. Peres and A. Yu. Smirnov, Oscillations of very low energy atmospheric neutrinos, Phys. Rev. D 79 (2009) 113002 [arXiv:0903.5323] [INSPIRE].ADSGoogle Scholar
  82. [82]
    A.M. Dziewonski and D.L. Anderson, Preliminary reference earth model, Phys. Earth Planet. Interiors 25 (1981) 297.ADSCrossRefGoogle Scholar
  83. [83]
    J. Billard, F. Mayet and D. Santos, Assessing the discovery potential of directional detection of Dark Matter, Phys. Rev. D 85 (2012) 035006 [arXiv:1110.6079] [INSPIRE].ADSGoogle Scholar
  84. [84]
    C.A.J. O’Hare, A.M. Green, J. Billard, E. Figueroa-Feliciano and L.E. Strigari, Readout strategies for directional dark matter detection beyond the neutrino background, Phys. Rev. D 92 (2015) 063518 [arXiv:1505.08061] [INSPIRE].ADSGoogle Scholar
  85. [85]
    P. Agrawal, Z. Chacko, C. Kilic and R.K. Mishra, A Classification of Dark Matter Candidates with Primarily Spin-Dependent Interactions with Matter, arXiv:1003.1912 [INSPIRE].
  86. [86]
    M. Honda, T. Kajita, K. Kasahara and S. Midorikawa, Improvement of low energy atmospheric neutrino flux calculation using the JAM nuclear interaction model, Phys. Rev. D 83 (2011) 123001 [arXiv:1102.2688] [INSPIRE].ADSGoogle Scholar
  87. [87]
    XENON collaboration, E. Aprile et al., First Dark Matter Search Results from the XENON1T Experiment, Phys. Rev. Lett. 119 (2017) 181301 [arXiv:1705.06655] [INSPIRE].

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Departament de Física Quàntica i Astrofísica and Institut de Ciencies del CosmosUniversitat de BarcelonaBarcelonaSpain
  2. 2.Institució Catalana de Recerca i Estudis Avançats (ICREA)BarcelonaSpain
  3. 3.C.N. Yang Institute for Theoretical PhysicsStony Brook UniversityStony BrookU.S.A.
  4. 4.Instituto de Física Teórica UAM/CSICUniversidad Autónoma de MadridCantoblancoSpain
  5. 5.Departamento de Física Matemática, Instituto de FísicaUniversidade de São PauloSão PauloBrazil
  6. 6.ICTP South American Institute for Fundamental Research & Instituto de Física TeóricaUniversidade Estadual PaulistaSão PauloBrazil

Personalised recommendations