# Twisted Flato-Fronsdal theorem for higher-spin algebras

## Abstract

We explore the relation between the singleton and adjoint modules of higher-spin algebras via *so*(2*, d*) characters. In order to relate the tensor product of the singleton and its dual to the adjoint module, we consider a heuristic formula involving symmetrization over the variables of the character. We show that our formula reproduces correctly the adjoint-module character for type-A (and its high-order extensions) and type-B higher-spin gravity theories in any dimension. Implications and subtleties of this symmetrization prescription in other models are discussed.

## Keywords

Higher Spin Gravity Higher Spin Symmetry## Notes

### **Open Access**

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

## References

- [1]P.A.M. Dirac,
*A Remarkable representation of the*3 + 2*de Sitter group*,*J. Math. Phys.***4**(1963) 901 [INSPIRE]. - [2]M. Flato and C. Fronsdal,
*One Massless Particle Equals Two Dirac Singletons: Elementary Particles in a Curved Space. 6.*,*Lett. Math. Phys.***2**(1978) 421 [INSPIRE]. - [3]M. Günaydin and N. Marcus,
*The Spectrum of the S*^{5}*Compactification of the Chiral N*= 2*, D*= 10*Supergravity and the Unitary Supermultiplets of*U(2*,*2*/*4),*Class. Quant. Grav.***2**(1985) L11 [INSPIRE]. - [4]M. Günaydin and N. Marcus,
*The Unitary Supermultiplet of N*= 8*Conformal Superalgebra Involving Fields of Spin*≤ 2,*Class. Quant. Grav.***2**(1985) L19 [INSPIRE]. - [5]M. Günaydin, P. van Nieuwenhuizen and N.P. Warner,
*General Construction of the Unitary Representations of Anti-de Sitter Superalgebras and the Spectrum of the S*^{4}*Compactification of Eleven-dimensional Supergravity*,*Nucl. Phys.***B 255**(1985) 63 [INSPIRE]. - [6]M. Günaydin and N.P. Warner,
*Unitary Supermultiplets of Osp*(8*/*4*, r*)*and the Spectrum of the S*_{7}*Compactification of Eleven-dimensional Supergravity*,*Nucl. Phys.***B 272**(1986) 99 [INSPIRE].ADSCrossRefGoogle Scholar - [7]E. Angelopoulos and M. Laoues,
*Singletons on AdS*_{n}, in*Conference Moshe Flato Dijon*, France, September 5–8, 1999, pp. 3–23, Mathematical Physics Studies, vol. 21/22, Springer (2000).Google Scholar - [8]M.A. Vasiliev,
*Higher spin superalgebras in any dimension and their representations*,*JHEP***12**(2004) 046 [hep-th/0404124] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar - [9]X. Bekaert and M. Grigoriev,
*Higher order singletons, partially massless fields and their boundary values in the ambient approach*,*Nucl. Phys.*B 876 (2013) 667 [arXiv:1305.0162] [INSPIRE]. - [10]T. Basile, X. Bekaert and N. Boulanger,
*Flato-Fronsdal theorem for higher-order singletons*,*JHEP*11 (2014) 131 [arXiv:1410.7668] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [11]F.A. Dolan,
*Character formulae and partition functions in higher dimensional conformal field theory*,*J. Math. Phys.*47 (2006) 062303 [hep-th/0508031] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [12]E.S. Fradkin and M.A. Vasiliev,
*Candidate to the Role of Higher Spin Symmetry*,*Annals Phys.*177 (1987) 63 [INSPIRE]. - [13]M.A. Vasiliev,
*Consistent equation for interacting gauge fields of all spins in*(3 + 1)*-dimensions*,*Phys. Lett.*B 243 (1990) 378 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [14]X. Bekaert, S. Cnockaert, C. Iazeolla and M.A. Vasiliev,
*Nonlinear higher spin theories in various dimensions*, in*Higher spin gauge theories: Proceedings, 1st Solvay Workshop*, Brussels, Belgium, 12–14 May 2004, pp. 132–197 [hep-th/0503128] [INSPIRE]. - [15]
- [16]M.G. Eastwood,
*Higher symmetries of the Laplacian*,*Annals Math.*161 (2005) 1645 [hep-th/0206233] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar - [17]M.A. Vasiliev,
*Nonlinear equations for symmetric massless higher spin fields in (A)dS(d)*,*Phys. Lett.*B 567 (2003) 139 [hep-th/0304049] [INSPIRE]. - [18]C. Iazeolla and P. Sundell,
*A Fiber Approach to Harmonic Analysis of Unfolded Higher-Spin Field Equations*,*JHEP*10 (2008) 022 [arXiv:0806.1942] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [19]R.K. Gupta and S. Lal,
*Partition Functions for Higher-Spin theories in AdS*,*JHEP*07 (2012) 071 [arXiv:1205.1130] [INSPIRE]. - [20]S. Lal,
*CFT*(4)*Partition Functions and the Heat Kernel on AdS*(5),*Phys. Lett.*B 727 (2013) 325 [arXiv:1212.1050] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar - [21]S. Giombi, I.R. Klebanov and A.A. Tseytlin,
*Partition Functions and Casimir Energies in Higher Spin AdS*_{d+1}*/CFT*_{d},*Phys. Rev.*D 90 (2014) 024048 [arXiv:1402.5396] [INSPIRE]. - [22]S. Giombi, I.R. Klebanov and B.R. Safdi,
*Higher Spin AdS*_{d+1}*/CFT*_{d}*at One Loop*,*Phys. Rev.*D 89 (2014) 084004 [arXiv:1401.0825] [INSPIRE].ADSGoogle Scholar - [23]A. Campoleoni, H.A. Gonzalez, B. Oblak and M. Riegler,
*Rotating Higher Spin Partition Functions and Extended BMS Symmetries*,*JHEP*04 (2016) 034 [arXiv:1512.03353] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar - [24]J.-B. Bae, E. Joung and S. Lal,
*On the Holography of Free Yang-Mills*,*JHEP*10 (2016) 074 [arXiv:1607.07651] [INSPIRE]. - [25]J.-B. Bae, E. Joung and S. Lal,
*One-loop test of free*SU(*N*)*adjoint model holography*,*JHEP*04 (2016) 061 [arXiv:1603.05387] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar - [26]M. Günaydin, E.D. Skvortsov and T. Tran,
*Exceptional F*(4)*higher-spin theory in AdS*_{6}*at one-loop and other tests of duality*,*JHEP*11 (2016) 168 [arXiv:1608.07582] [INSPIRE]. - [27]J.-B. Bae, E. Joung and S. Lal,
*Exploring Free Matrix CFT Holographies at One-Loop*,*Universe*3 (2017) 77 [arXiv:1708.04644] [INSPIRE]. - [28]M. Beccaria, X. Bekaert and A.A. Tseytlin,
*Partition function of free conformal higher spin theory*,*JHEP*08 (2014) 113 [arXiv:1406.3542] [INSPIRE]. - [29]T. Basile, X. Bekaert and N. Boulanger,
*Mixed-symmetry fields in de Sitter space: a group theoretical glance*,*JHEP*05 (2017) 081 [arXiv:1612.08166] [INSPIRE]. - [30]A. Bourget and J. Troost,
*The Conformal Characters*,*JHEP*04 (2018) 055 [arXiv:1712.05415] [INSPIRE]. - [31]M.A. Vasiliev,
*More on equations of motion for interacting massless fields of all spins in (3+1)-dimensions*,*Phys. Lett.*B 285 (1992) 225 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar - [32]
- [33]M.A. Vasiliev,
*Progress in higher spin gauge theories*, in*Quantization, gauge theory and strings. Proceedings, International Conference dedicated to the memory of Professor Efim Fradkin*, Moscow, Russia, June 5–10, 2000. Vol. 1+2, pp. 452–471 (2001) [DOI: https://doi.org/10.1142/9789812777386_0199] [hep-th/0104246] [INSPIRE]. - [34]J. Engquist, E. Sezgin and P. Sundell,
*On N*= 1*, N*= 2*, N*= 4*higher spin gauge theories in four-dimensions*,*Class. Quant. Grav.*19 (2002) 6175 [hep-th/0207101] [INSPIRE]. - [35]E. Sezgin and P. Sundell,
*Geometry and Observables in Vasiliev’s Higher Spin Gravity*,*JHEP*07 (2012) 121 [arXiv:1103.2360] [INSPIRE]. - [36]I.R. Klebanov and A.M. Polyakov,
*AdS dual of the critical O*(*N*)*vector model*,*Phys. Lett.*B 550 (2002) 213 [hep-th/0210114] [INSPIRE]. - [37]E. Sezgin and P. Sundell,
*Massless higher spins and holography*,*Nucl. Phys.*B 644 (2002) 303 [*Erratum ibid.*B 660 (2003) 403] [hep-th/0205131] [INSPIRE]. - [38]A. Joseph,
*The minimal orbit in a simple Lie algebra and its associated maximal ideal*,*Ann. Sci. École Norm. Sup.*9 (1976) 1.MathSciNetCrossRefzbMATHGoogle Scholar - [39][39] S. Fernando and M. Günaydin,
*Massless conformal fields, AdS*_{d+1}*/CFT*_{d}*higher spin algebras and their deformations*,*Nucl. Phys.*B 904 (2016) 494 [arXiv:1511.02167] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar - [40]E. Joung and K. Mkrtchyan,
*Notes on higher-spin algebras: minimal representations and structure constants*,*JHEP*05 (2014) 103 [arXiv:1401.7977] [INSPIRE]. - [41]M. Günaydin,
*Oscillator like unitary representations of noncompact groups and supergroups and extended supergravity theories*, in*Group Theoretical Methods in Physics. Proceedings, 11th International Colloquium*, Istanbul, Turkey, August 23–28, 1982, pp. 192–213 (1983) [INSPIRE]. - [42]M. Günaydin,
*Oscillator-Like Unitary Representations Of Non-Compact Groups And Supergroups And Extended Supergravity Theories*,*Lect. Notes Phys.*180 (1983) 192 [INSPIRE].ADSCrossRefGoogle Scholar - [43]S.E. Konshtein and M.A. Vasiliev,
*Massless Representations and Admissibility Condition for Higher Spin Superalgebras*,*Nucl. Phys.*B 312 (1989) 402 [INSPIRE]. - [44]R.G. Leigh and A.C. Petkou,
*Holography of the N*= 1*higher spin theory on AdS*_{4},*JHEP*06 (2003) 011 [hep-th/0304217] [INSPIRE]. - [45]E. Sezgin and P. Sundell,
*Holography in*4*D (super) higher spin theories and a test via cubic scalar couplings*,*JHEP*07 (2005) 044 [hep-th/0305040] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar - [46]S.E. Konstein and M.A. Vasiliev,
*Extended Higher Spin Superalgebras and Their Massless Representations*,*Nucl. Phys.*B 331 (1990) 475 [INSPIRE]. - [47]E. Sezgin and P. Sundell,
*Doubletons and*5*-D higher spin gauge theory*,*JHEP*09 (2001) 036 [hep-th/0105001] [INSPIRE]. - [48]O.V. Shaynkman, I.Yu. Tipunin and M.A. Vasiliev,
*Unfolded form of conformal equations in M dimensions and o*(*M*+ 2)*modules*,*Rev. Math. Phys.*18 (2006) 823 [hep-th/0401086] [INSPIRE]. - [49]R. Estrada and R. Kanwal,
*A Distributional Approach to Asymptotics: Theory and Applications*, Birkhäuser Advanced Texts Basler Lehrbücher, Birkhäuser Boston (2002).Google Scholar - [50]K. Knopp,
*Theory and Application of Infinite Series*, Dover Books on Mathematics, Dover Publications (1951).Google Scholar - [51]R.C. King,
*Modification rules and products of irreducible representations of the unitary, orthogonal and symplectic groups*,*J. Math. Phys.*12 (1971) 1588 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [52]X. Bekaert and N. Boulanger,
*The Unitary representations of the Poincaré group in any spacetime dimension*, in*2nd Modave Summer School in Theoretical Physics Modave*, Belgium, August 6–12, 2006 [hep-th/0611263] [INSPIRE]. - [53]S. Giombi, I.R. Klebanov and Z.M. Tan,
*The ABC of Higher-Spin AdS/CFT*,*Universe*4 (2018) 18 [arXiv:1608.07611] [INSPIRE]. - [54]E. Sezgin and P. Sundell,
*Supersymmetric Higher Spin Theories*,*J. Phys.*A 46 (2013) 214022 [arXiv:1208.6019] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar - [55]Y. Pang, E. Sezgin and Y. Zhu,
*One Loop Tests of Supersymmetric Higher Spin AdS*_{4}*/CFT*_{3},*Phys. Rev.*D 95 (2017) 026008 [arXiv:1608.07298] [INSPIRE]. - [56]P.S. Howe and U. Lindström,
*Super-Laplacians and their symmetries*,*JHEP*05 (2017) 119 [arXiv:1612.06787] [INSPIRE]. - [57]M. Günaydin,
*Singleton and doubleton supermultiplets of space-time supergroups and infinite spin superalgebras*, in*Trieste Conference on Supermembranes and Physics in 2+1 Dimensions*, Trieste, Italy, July 17–21, 1989, pp. 0442-456 [CERN-TH-5500-89]. - [58]K. Govil and M. Günaydin,
*Deformed Twistors and Higher Spin Conformal (Super-)Algebras in Four Dimensions*,*JHEP*03 (2015) 026 [arXiv:1312.2907] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [59]K. Govil and M. Günaydin,
*Deformed Twistors and Higher Spin Conformal (Super-)Algebras in Six Dimensions*,*JHEP*07 (2014) 004 [arXiv:1401.6930] [INSPIRE]. - [60]S. Fernando and M. Günaydin,
*Minimal unitary representation of 5d superconformal algebra F*(4)*and AdS*_{6}*/CFT*_{5}*higher spin (super)-algebras*,*Nucl. Phys.*B 890 (2014) 570 [arXiv:1409.2185] [INSPIRE].ADSGoogle Scholar - [61]K.B. Alkalaev,
*Global and local properties of AdS*_{2}*higher spin gravity*,*JHEP*10 (2014) 122 [arXiv:1404.5330] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar - [62]D. Grumiller, M. Leston and D. Vassilevich,
*Anti-de Sitter holography for gravity and higher spin theories in two dimensions*,*Phys. Rev.*D 89 (2014) 044001 [arXiv:1311.7413] [INSPIRE].ADSGoogle Scholar - [63]K.B. Alkalaev,
*On higher spin extension of the Jackiw-Teitelboim gravity model*,*J. Phys.*A 47 (2014) 365401 [arXiv:1311.5119] [INSPIRE]. - [64]A. Barut and C. Fronsdal,
*On non-compact groups. II. Representations of the*2 + 1*Lorentz group*,*Proc. Roy. Soc. Lond.*A 287 (1965) 532.Google Scholar - [65]A.U. Klimyk and N.Y. Vilenkin,
*Representations of Lie Groups and Special Functions*, Springer Berlin Heidelberg (1995).Google Scholar - [66]A. Kitaev,
*Notes on*\( \tilde{\mathrm{SL}}\left(2,\mathrm{\mathbb{R}}\right) \)*representations*, arXiv:1711.08169 [INSPIRE]. - [67]J. Repka,
*Tensor products of unitary representations of SL*_{2}(*R*),*Am. J. Math.*100 (1978) 747.Google Scholar - [68]A. Joseph,
*Kostant’s problem, Goldie rank and the Gelfand-Kirillov conjecture*,*Invent. Math.*56 (1980) 191.ADSMathSciNetCrossRefzbMATHGoogle Scholar - [69]E.S. Fradkin and V.Ya. Linetsky,
*Infinite dimensional generalizations of finite dimensional symmetries*,*J. Math. Phys.*32 (1991) 1218 [INSPIRE]. - [70]E.S. Fradkin and V.Ya. Linetsky,
*Infinite dimensional generalizations of simple Lie algebras*,*Mod. Phys. Lett.*A 5 (1990) 1967 [INSPIRE]. - [71]E. Hewitt and A. Kirillov,
*Elements of the Theory of Representations*, Grundlehren der mathematischen Wissenschaften, Springer Berlin Heidelberg (2012).Google Scholar - [72]J. Dixmier,
*Enveloping algebras*, vol. 14, Newnes (1977).Google Scholar - [73]B.L. Feigin,
*The Lie algebras*\( \mathfrak{g}\mathfrak{l}\left(\uplambda \right) \)*and cohomologies of Lie algebras of differential operators*,*Russ. Math. Surv.*43 (1988) 169.CrossRefGoogle Scholar - [74]N. Boulanger, D. Ponomarev, E. Sezgin and P. Sundell,
*New unfolded higher spin systems in AdS*_{3},*Class. Quant. Grav.*32 (2015) 155002 [arXiv:1412.8209] [INSPIRE]. - [75]M.R. Gaberdiel, R. Gopakumar and A. Saha,
*Quantum W-symmetry in AdS*_{3},*JHEP*02 (2011) 004 [arXiv:1009.6087] [INSPIRE]. - [76]M.R. Gaberdiel and R. Gopakumar,
*An AdS*_{3}*Dual for Minimal Model CFTs*,*Phys. Rev.*D 83 (2011) 066007 [arXiv:1011.2986] [INSPIRE]. - [77]M.R. Gaberdiel and R. Gopakumar,
*Minimal Model Holography*,*J. Phys.*A 46 (2013) 214002 [arXiv:1207.6697] [INSPIRE]. - [78]E. Bergshoeff, M.P. Blencowe and K.S. Stelle,
*Area Preserving Diffeomorphisms and Higher Spin Algebra*,*Commun. Math. Phys.*128 (1990) 213 [INSPIRE]. - [79]M. Bordemann, J. Hoppe and P. Schaller,
*Infinite dimensional matrix algebras*,*Phys. Lett.*B 232 (1989) 199 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar - [80]M.A. Vasiliev,
*Higher Spin Algebras and Quantization on the Sphere and Hyperboloid*,*Int. J. Mod. Phys.*A 6 (1991) 1115 [INSPIRE]. - [81]S.F. Prokushkin and M.A. Vasiliev,
*Higher spin gauge interactions for massive matter fields in*3 −*D AdS space-time*,*Nucl. Phys.*B 545 (1999) 385 [hep-th/9806236] [INSPIRE]. - [82]A. Campoleoni, S. Fredenhagen, S. Pfenninger and S. Theisen,
*Asymptotic symmetries of three-dimensional gravity coupled to higher-spin fields*,*JHEP*11 (2010) 007 [arXiv:1008.4744] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [83]A. Campoleoni, S. Fredenhagen and S. Pfenninger,
*Asymptotic W-symmetries in three-dimensional higher-spin gauge theories*,*JHEP*09 (2011) 113 [arXiv:1107.0290] [INSPIRE]. - [84]M. Henneaux and S.-J. Rey,
*Nonlinear W*_{∞}*as Asymptotic Symmetry of Three-Dimensional Higher Spin Anti-de Sitter Gravity*,*JHEP*12 (2010) 007 [arXiv:1008.4579] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar - [85]M. Henneaux, G. Lucena Gómez, J. Park and S.-J. Rey,
*Super-W*_{∞}*Asymptotic Symmetry of Higher-Spin AdS*_{3}*Supergravity*,*JHEP*06 (2012) 037 [arXiv:1203.5152] [INSPIRE].ADSCrossRefGoogle Scholar - [86]E.D. Skvortsov and M.A. Vasiliev,
*Geometric formulation for partially massless fields*,*Nucl. Phys.*B 756 (2006) 117 [hep-th/0601095] [INSPIRE]. - [87]K.B. Alkalaev, M. Grigoriev and E.D. Skvortsov,
*Uniformizing higher-spin equations*,*J. Phys.*A 48 (2015) 015401 [arXiv:1409.6507] [INSPIRE]. - [88]C. Brust and K. Hinterbichler,
*Partially Massless Higher-Spin Theory*,*JHEP*02 (2017) 086 [arXiv:1610.08510] [INSPIRE]. - [89]C. Brust and K. Hinterbichler,
*Partially Massless Higher-Spin Theory II: One-Loop Effective Actions*,*JHEP*01 (2017) 126 [arXiv:1610.08522] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [90]E. Joung and K. Mkrtchyan,
*Partially-massless higher-spin algebras and their finite-dimensional truncations*,*JHEP*01 (2016) 003 [arXiv:1508.07332] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [91][91] M. Eastwood and T. Leistner,
*Higher symmetries of the square of the Laplacian*, in*Symmetries and overdetermined systems of partial differential equations*, pp. 319–338. Springer (2008) [math/0610610]. - [92]A.R. Gover and J. Šilhan,
*Higher symmetries of the conformal powers of the Laplacian on conformally flat manifolds*,*J. Math. Phys.*53 (2012) 032301 [arXiv:0911.5265]. - [93]J.-P. Michel,
*Higher symmetries of the Laplacian via quantization*,*Annales Inst. Fourier*64 (2014) 1581 [arXiv:1107.5840]. - [94]K. Alkalaev,
*Mixed-symmetry tensor conserved currents and AdS/CFT correspondence*,*J. Phys.*A 46 (2013) 214007 [arXiv:1207.1079] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar - [95]N. Boulanger, C. Iazeolla and P. Sundell,
*Unfolding Mixed-Symmetry Fields in AdS and the BMV Conjecture: I. General Formalism*,*JHEP*07 (2009) 013 [arXiv:0812.3615] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar - [96]N. Boulanger, C. Iazeolla and P. Sundell,
*Unfolding Mixed-Symmetry Fields in AdS and the BMV Conjecture. II. Oscillator Realization*,*JHEP*07 (2009) 014 [arXiv:0812.4438] [INSPIRE]. - [97]E.D. Skvortsov,
*Gauge fields in*(*A*)*dS*_{d}*and Connections of its symmetry algebra*,*J. Phys.*A 42 (2009) 385401 [arXiv:0904.2919] [INSPIRE].ADSzbMATHGoogle Scholar - [98]E.D. Skvortsov,
*Gauge fields in*(*A*)*dS*_{d}*within the unfolded approach: algebraic aspects*,*JHEP*01 (2010) 106 [arXiv:0910.3334] [INSPIRE]. - [99]K. Alkalaev,
*Massless hook field in AdS*_{d+1}*from the holographic perspective*,*JHEP*01 (2013) 018 [arXiv:1210.0217] [INSPIRE].ADSCrossRefGoogle Scholar - [100]W. Siegel,
*All Free Conformal Representations in All Dimensions*,*Int. J. Mod. Phys.*A 4 (1989) 2015 [INSPIRE]. - [101]E. Angelopoulos and M. Laoues,
*Masslessness in n-dimensions*,*Rev. Math. Phys.*10 (1998) 271 [hep-th/9806100] [INSPIRE]. - [102]J.B. Ehrman,
*On the unitary irreducible representations of the universal covering group of the 3 + 2 deSitter group*,*Math. Proc. Cambridge Phil. Soc.*53 (1957) 290.ADSMathSciNetCrossRefzbMATHGoogle Scholar - [103]X. Bekaert,
*Singletons and their maximal symmetry algebras*, in*Modern Mathematical Physics. Proceedings, 6th Summer School*, Belgrade, Serbia, September 14–23, 2010, pp. 71–89 (2011) [arXiv:1111.4554] [INSPIRE]. - [104]N. Boulanger and E.D. Skvortsov,
*Higher-spin algebras and cubic interactions for simple mixed-symmetry fields in AdS spacetime*,*JHEP*09 (2011) 063 [arXiv:1107.5028] [INSPIRE]. - [105]R. Manvelyan, K. Mkrtchyan, R. Mkrtchyan and S. Theisen,
*On Higher Spin Symmetries in AdS*_{5},*JHEP*10 (2013) 185 [arXiv:1304.7988] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar