Advertisement

Twisted Flato-Fronsdal theorem for higher-spin algebras

  • Thomas Basile
  • Xavier Bekaert
  • Euihun JoungEmail author
Open Access
Regular Article - Theoretical Physics

Abstract

We explore the relation between the singleton and adjoint modules of higher-spin algebras via so(2, d) characters. In order to relate the tensor product of the singleton and its dual to the adjoint module, we consider a heuristic formula involving symmetrization over the variables of the character. We show that our formula reproduces correctly the adjoint-module character for type-A (and its high-order extensions) and type-B higher-spin gravity theories in any dimension. Implications and subtleties of this symmetrization prescription in other models are discussed.

Keywords

Higher Spin Gravity Higher Spin Symmetry 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    P.A.M. Dirac, A Remarkable representation of the 3 + 2 de Sitter group, J. Math. Phys. 4 (1963) 901 [INSPIRE].
  2. [2]
    M. Flato and C. Fronsdal, One Massless Particle Equals Two Dirac Singletons: Elementary Particles in a Curved Space. 6., Lett. Math. Phys. 2 (1978) 421 [INSPIRE].
  3. [3]
    M. Günaydin and N. Marcus, The Spectrum of the S 5 Compactification of the Chiral N = 2, D = 10 Supergravity and the Unitary Supermultiplets of U(2,2/4), Class. Quant. Grav. 2 (1985) L11 [INSPIRE].
  4. [4]
    M. Günaydin and N. Marcus, The Unitary Supermultiplet of N = 8 Conformal Superalgebra Involving Fields of Spin ≤ 2, Class. Quant. Grav. 2 (1985) L19 [INSPIRE].
  5. [5]
    M. Günaydin, P. van Nieuwenhuizen and N.P. Warner, General Construction of the Unitary Representations of Anti-de Sitter Superalgebras and the Spectrum of the S 4 Compactification of Eleven-dimensional Supergravity, Nucl. Phys. B 255 (1985) 63 [INSPIRE].
  6. [6]
    M. Günaydin and N.P. Warner, Unitary Supermultiplets of Osp(8/4, r) and the Spectrum of the S 7 Compactification of Eleven-dimensional Supergravity, Nucl. Phys. B 272 (1986) 99 [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    E. Angelopoulos and M. Laoues, Singletons on AdS n, in Conference Moshe Flato Dijon, France, September 5–8, 1999, pp. 3–23, Mathematical Physics Studies, vol. 21/22, Springer (2000).Google Scholar
  8. [8]
    M.A. Vasiliev, Higher spin superalgebras in any dimension and their representations, JHEP 12 (2004) 046 [hep-th/0404124] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  9. [9]
    X. Bekaert and M. Grigoriev, Higher order singletons, partially massless fields and their boundary values in the ambient approach, Nucl. Phys. B 876 (2013) 667 [arXiv:1305.0162] [INSPIRE].
  10. [10]
    T. Basile, X. Bekaert and N. Boulanger, Flato-Fronsdal theorem for higher-order singletons, JHEP 11 (2014) 131 [arXiv:1410.7668] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    F.A. Dolan, Character formulae and partition functions in higher dimensional conformal field theory, J. Math. Phys. 47 (2006) 062303 [hep-th/0508031] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    E.S. Fradkin and M.A. Vasiliev, Candidate to the Role of Higher Spin Symmetry, Annals Phys. 177 (1987) 63 [INSPIRE].
  13. [13]
    M.A. Vasiliev, Consistent equation for interacting gauge fields of all spins in (3 + 1)-dimensions, Phys. Lett. B 243 (1990) 378 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    X. Bekaert, S. Cnockaert, C. Iazeolla and M.A. Vasiliev, Nonlinear higher spin theories in various dimensions, in Higher spin gauge theories: Proceedings, 1st Solvay Workshop, Brussels, Belgium, 12–14 May 2004, pp. 132–197 [hep-th/0503128] [INSPIRE].
  15. [15]
    V.E. Didenko and E.D. Skvortsov, Elements of Vasiliev theory, arXiv:1401.2975 [INSPIRE].
  16. [16]
    M.G. Eastwood, Higher symmetries of the Laplacian, Annals Math. 161 (2005) 1645 [hep-th/0206233] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    M.A. Vasiliev, Nonlinear equations for symmetric massless higher spin fields in (A)dS(d), Phys. Lett. B 567 (2003) 139 [hep-th/0304049] [INSPIRE].
  18. [18]
    C. Iazeolla and P. Sundell, A Fiber Approach to Harmonic Analysis of Unfolded Higher-Spin Field Equations, JHEP 10 (2008) 022 [arXiv:0806.1942] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    R.K. Gupta and S. Lal, Partition Functions for Higher-Spin theories in AdS, JHEP 07 (2012) 071 [arXiv:1205.1130] [INSPIRE].
  20. [20]
    S. Lal, CFT(4) Partition Functions and the Heat Kernel on AdS(5), Phys. Lett. B 727 (2013) 325 [arXiv:1212.1050] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  21. [21]
    S. Giombi, I.R. Klebanov and A.A. Tseytlin, Partition Functions and Casimir Energies in Higher Spin AdS d+1 /CFT d, Phys. Rev. D 90 (2014) 024048 [arXiv:1402.5396] [INSPIRE].
  22. [22]
    S. Giombi, I.R. Klebanov and B.R. Safdi, Higher Spin AdS d+1 /CFT d at One Loop, Phys. Rev. D 89 (2014) 084004 [arXiv:1401.0825] [INSPIRE].ADSGoogle Scholar
  23. [23]
    A. Campoleoni, H.A. Gonzalez, B. Oblak and M. Riegler, Rotating Higher Spin Partition Functions and Extended BMS Symmetries, JHEP 04 (2016) 034 [arXiv:1512.03353] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  24. [24]
    J.-B. Bae, E. Joung and S. Lal, On the Holography of Free Yang-Mills, JHEP 10 (2016) 074 [arXiv:1607.07651] [INSPIRE].
  25. [25]
    J.-B. Bae, E. Joung and S. Lal, One-loop test of free SU(N) adjoint model holography, JHEP 04 (2016) 061 [arXiv:1603.05387] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  26. [26]
    M. Günaydin, E.D. Skvortsov and T. Tran, Exceptional F(4) higher-spin theory in AdS 6 at one-loop and other tests of duality, JHEP 11 (2016) 168 [arXiv:1608.07582] [INSPIRE].
  27. [27]
    J.-B. Bae, E. Joung and S. Lal, Exploring Free Matrix CFT Holographies at One-Loop, Universe 3 (2017) 77 [arXiv:1708.04644] [INSPIRE].
  28. [28]
    M. Beccaria, X. Bekaert and A.A. Tseytlin, Partition function of free conformal higher spin theory, JHEP 08 (2014) 113 [arXiv:1406.3542] [INSPIRE].
  29. [29]
    T. Basile, X. Bekaert and N. Boulanger, Mixed-symmetry fields in de Sitter space: a group theoretical glance, JHEP 05 (2017) 081 [arXiv:1612.08166] [INSPIRE].
  30. [30]
    A. Bourget and J. Troost, The Conformal Characters, JHEP 04 (2018) 055 [arXiv:1712.05415] [INSPIRE].
  31. [31]
    M.A. Vasiliev, More on equations of motion for interacting massless fields of all spins in (3+1)-dimensions, Phys. Lett. B 285 (1992) 225 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  32. [32]
    M.A. Vasiliev, Higher spin gauge theories: Star product and AdS space, hep-th/9910096 [INSPIRE].
  33. [33]
    M.A. Vasiliev, Progress in higher spin gauge theories, in Quantization, gauge theory and strings. Proceedings, International Conference dedicated to the memory of Professor Efim Fradkin, Moscow, Russia, June 5–10, 2000. Vol. 1+2, pp. 452–471 (2001) [DOI: https://doi.org/10.1142/9789812777386_0199] [hep-th/0104246] [INSPIRE].
  34. [34]
    J. Engquist, E. Sezgin and P. Sundell, On N = 1, N = 2, N = 4 higher spin gauge theories in four-dimensions, Class. Quant. Grav. 19 (2002) 6175 [hep-th/0207101] [INSPIRE].
  35. [35]
    E. Sezgin and P. Sundell, Geometry and Observables in Vasiliev’s Higher Spin Gravity, JHEP 07 (2012) 121 [arXiv:1103.2360] [INSPIRE].
  36. [36]
    I.R. Klebanov and A.M. Polyakov, AdS dual of the critical O(N) vector model, Phys. Lett. B 550 (2002) 213 [hep-th/0210114] [INSPIRE].
  37. [37]
    E. Sezgin and P. Sundell, Massless higher spins and holography, Nucl. Phys. B 644 (2002) 303 [Erratum ibid. B 660 (2003) 403] [hep-th/0205131] [INSPIRE].
  38. [38]
    A. Joseph, The minimal orbit in a simple Lie algebra and its associated maximal ideal, Ann. Sci. École Norm. Sup. 9 (1976) 1.MathSciNetCrossRefzbMATHGoogle Scholar
  39. [39]
    [39] S. Fernando and M. Günaydin, Massless conformal fields, AdS d+1 /CFT d higher spin algebras and their deformations, Nucl. Phys. B 904 (2016) 494 [arXiv:1511.02167] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  40. [40]
    E. Joung and K. Mkrtchyan, Notes on higher-spin algebras: minimal representations and structure constants, JHEP 05 (2014) 103 [arXiv:1401.7977] [INSPIRE].
  41. [41]
    M. Günaydin, Oscillator like unitary representations of noncompact groups and supergroups and extended supergravity theories, in Group Theoretical Methods in Physics. Proceedings, 11th International Colloquium, Istanbul, Turkey, August 23–28, 1982, pp. 192–213 (1983) [INSPIRE].
  42. [42]
    M. Günaydin, Oscillator-Like Unitary Representations Of Non-Compact Groups And Supergroups And Extended Supergravity Theories, Lect. Notes Phys. 180 (1983) 192 [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    S.E. Konshtein and M.A. Vasiliev, Massless Representations and Admissibility Condition for Higher Spin Superalgebras, Nucl. Phys. B 312 (1989) 402 [INSPIRE].
  44. [44]
    R.G. Leigh and A.C. Petkou, Holography of the N = 1 higher spin theory on AdS 4, JHEP 06 (2003) 011 [hep-th/0304217] [INSPIRE].
  45. [45]
    E. Sezgin and P. Sundell, Holography in 4D (super) higher spin theories and a test via cubic scalar couplings, JHEP 07 (2005) 044 [hep-th/0305040] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  46. [46]
    S.E. Konstein and M.A. Vasiliev, Extended Higher Spin Superalgebras and Their Massless Representations, Nucl. Phys. B 331 (1990) 475 [INSPIRE].
  47. [47]
    E. Sezgin and P. Sundell, Doubletons and 5-D higher spin gauge theory, JHEP 09 (2001) 036 [hep-th/0105001] [INSPIRE].
  48. [48]
    O.V. Shaynkman, I.Yu. Tipunin and M.A. Vasiliev, Unfolded form of conformal equations in M dimensions and o(M + 2) modules, Rev. Math. Phys. 18 (2006) 823 [hep-th/0401086] [INSPIRE].
  49. [49]
    R. Estrada and R. Kanwal, A Distributional Approach to Asymptotics: Theory and Applications, Birkhäuser Advanced Texts Basler Lehrbücher, Birkhäuser Boston (2002).Google Scholar
  50. [50]
    K. Knopp, Theory and Application of Infinite Series, Dover Books on Mathematics, Dover Publications (1951).Google Scholar
  51. [51]
    R.C. King, Modification rules and products of irreducible representations of the unitary, orthogonal and symplectic groups, J. Math. Phys. 12 (1971) 1588 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  52. [52]
    X. Bekaert and N. Boulanger, The Unitary representations of the Poincaré group in any spacetime dimension, in 2nd Modave Summer School in Theoretical Physics Modave, Belgium, August 6–12, 2006 [hep-th/0611263] [INSPIRE].
  53. [53]
    S. Giombi, I.R. Klebanov and Z.M. Tan, The ABC of Higher-Spin AdS/CFT, Universe 4 (2018) 18 [arXiv:1608.07611] [INSPIRE].
  54. [54]
    E. Sezgin and P. Sundell, Supersymmetric Higher Spin Theories, J. Phys. A 46 (2013) 214022 [arXiv:1208.6019] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  55. [55]
    Y. Pang, E. Sezgin and Y. Zhu, One Loop Tests of Supersymmetric Higher Spin AdS 4 /CFT 3, Phys. Rev. D 95 (2017) 026008 [arXiv:1608.07298] [INSPIRE].
  56. [56]
    P.S. Howe and U. Lindström, Super-Laplacians and their symmetries, JHEP 05 (2017) 119 [arXiv:1612.06787] [INSPIRE].
  57. [57]
    M. Günaydin, Singleton and doubleton supermultiplets of space-time supergroups and infinite spin superalgebras, in Trieste Conference on Supermembranes and Physics in 2+1 Dimensions, Trieste, Italy, July 17–21, 1989, pp. 0442-456 [CERN-TH-5500-89].
  58. [58]
    K. Govil and M. Günaydin, Deformed Twistors and Higher Spin Conformal (Super-)Algebras in Four Dimensions, JHEP 03 (2015) 026 [arXiv:1312.2907] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  59. [59]
    K. Govil and M. Günaydin, Deformed Twistors and Higher Spin Conformal (Super-)Algebras in Six Dimensions, JHEP 07 (2014) 004 [arXiv:1401.6930] [INSPIRE].
  60. [60]
    S. Fernando and M. Günaydin, Minimal unitary representation of 5d superconformal algebra F(4) and AdS 6 /CFT 5 higher spin (super)-algebras, Nucl. Phys. B 890 (2014) 570 [arXiv:1409.2185] [INSPIRE].ADSGoogle Scholar
  61. [61]
    K.B. Alkalaev, Global and local properties of AdS 2 higher spin gravity, JHEP 10 (2014) 122 [arXiv:1404.5330] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  62. [62]
    D. Grumiller, M. Leston and D. Vassilevich, Anti-de Sitter holography for gravity and higher spin theories in two dimensions, Phys. Rev. D 89 (2014) 044001 [arXiv:1311.7413] [INSPIRE].ADSGoogle Scholar
  63. [63]
    K.B. Alkalaev, On higher spin extension of the Jackiw-Teitelboim gravity model, J. Phys. A 47 (2014) 365401 [arXiv:1311.5119] [INSPIRE].
  64. [64]
    A. Barut and C. Fronsdal, On non-compact groups. II. Representations of the 2 + 1 Lorentz group, Proc. Roy. Soc. Lond. A 287 (1965) 532.Google Scholar
  65. [65]
    A.U. Klimyk and N.Y. Vilenkin, Representations of Lie Groups and Special Functions, Springer Berlin Heidelberg (1995).Google Scholar
  66. [66]
    A. Kitaev, Notes on \( \tilde{\mathrm{SL}}\left(2,\mathrm{\mathbb{R}}\right) \) representations, arXiv:1711.08169 [INSPIRE].
  67. [67]
    J. Repka, Tensor products of unitary representations of SL 2(R), Am. J. Math. 100 (1978) 747.Google Scholar
  68. [68]
    A. Joseph, Kostant’s problem, Goldie rank and the Gelfand-Kirillov conjecture, Invent. Math. 56 (1980) 191.ADSMathSciNetCrossRefzbMATHGoogle Scholar
  69. [69]
    E.S. Fradkin and V.Ya. Linetsky, Infinite dimensional generalizations of finite dimensional symmetries, J. Math. Phys. 32 (1991) 1218 [INSPIRE].
  70. [70]
    E.S. Fradkin and V.Ya. Linetsky, Infinite dimensional generalizations of simple Lie algebras, Mod. Phys. Lett. A 5 (1990) 1967 [INSPIRE].
  71. [71]
    E. Hewitt and A. Kirillov, Elements of the Theory of Representations, Grundlehren der mathematischen Wissenschaften, Springer Berlin Heidelberg (2012).Google Scholar
  72. [72]
    J. Dixmier, Enveloping algebras, vol. 14, Newnes (1977).Google Scholar
  73. [73]
    B.L. Feigin, The Lie algebras \( \mathfrak{g}\mathfrak{l}\left(\uplambda \right) \) and cohomologies of Lie algebras of differential operators, Russ. Math. Surv. 43 (1988) 169.CrossRefGoogle Scholar
  74. [74]
    N. Boulanger, D. Ponomarev, E. Sezgin and P. Sundell, New unfolded higher spin systems in AdS 3, Class. Quant. Grav. 32 (2015) 155002 [arXiv:1412.8209] [INSPIRE].
  75. [75]
    M.R. Gaberdiel, R. Gopakumar and A. Saha, Quantum W-symmetry in AdS 3, JHEP 02 (2011) 004 [arXiv:1009.6087] [INSPIRE].
  76. [76]
    M.R. Gaberdiel and R. Gopakumar, An AdS 3 Dual for Minimal Model CFTs, Phys. Rev. D 83 (2011) 066007 [arXiv:1011.2986] [INSPIRE].
  77. [77]
    M.R. Gaberdiel and R. Gopakumar, Minimal Model Holography, J. Phys. A 46 (2013) 214002 [arXiv:1207.6697] [INSPIRE].
  78. [78]
    E. Bergshoeff, M.P. Blencowe and K.S. Stelle, Area Preserving Diffeomorphisms and Higher Spin Algebra, Commun. Math. Phys. 128 (1990) 213 [INSPIRE].
  79. [79]
    M. Bordemann, J. Hoppe and P. Schaller, Infinite dimensional matrix algebras, Phys. Lett. B 232 (1989) 199 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  80. [80]
    M.A. Vasiliev, Higher Spin Algebras and Quantization on the Sphere and Hyperboloid, Int. J. Mod. Phys. A 6 (1991) 1115 [INSPIRE].
  81. [81]
    S.F. Prokushkin and M.A. Vasiliev, Higher spin gauge interactions for massive matter fields in 3 − D AdS space-time, Nucl. Phys. B 545 (1999) 385 [hep-th/9806236] [INSPIRE].
  82. [82]
    A. Campoleoni, S. Fredenhagen, S. Pfenninger and S. Theisen, Asymptotic symmetries of three-dimensional gravity coupled to higher-spin fields, JHEP 11 (2010) 007 [arXiv:1008.4744] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  83. [83]
    A. Campoleoni, S. Fredenhagen and S. Pfenninger, Asymptotic W-symmetries in three-dimensional higher-spin gauge theories, JHEP 09 (2011) 113 [arXiv:1107.0290] [INSPIRE].
  84. [84]
    M. Henneaux and S.-J. Rey, Nonlinear W as Asymptotic Symmetry of Three-Dimensional Higher Spin Anti-de Sitter Gravity, JHEP 12 (2010) 007 [arXiv:1008.4579] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  85. [85]
    M. Henneaux, G. Lucena Gómez, J. Park and S.-J. Rey, Super-W Asymptotic Symmetry of Higher-Spin AdS 3 Supergravity, JHEP 06 (2012) 037 [arXiv:1203.5152] [INSPIRE].ADSCrossRefGoogle Scholar
  86. [86]
    E.D. Skvortsov and M.A. Vasiliev, Geometric formulation for partially massless fields, Nucl. Phys. B 756 (2006) 117 [hep-th/0601095] [INSPIRE].
  87. [87]
    K.B. Alkalaev, M. Grigoriev and E.D. Skvortsov, Uniformizing higher-spin equations, J. Phys. A 48 (2015) 015401 [arXiv:1409.6507] [INSPIRE].
  88. [88]
    C. Brust and K. Hinterbichler, Partially Massless Higher-Spin Theory, JHEP 02 (2017) 086 [arXiv:1610.08510] [INSPIRE].
  89. [89]
    C. Brust and K. Hinterbichler, Partially Massless Higher-Spin Theory II: One-Loop Effective Actions, JHEP 01 (2017) 126 [arXiv:1610.08522] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  90. [90]
    E. Joung and K. Mkrtchyan, Partially-massless higher-spin algebras and their finite-dimensional truncations, JHEP 01 (2016) 003 [arXiv:1508.07332] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  91. [91]
    [91] M. Eastwood and T. Leistner, Higher symmetries of the square of the Laplacian, in Symmetries and overdetermined systems of partial differential equations, pp. 319–338. Springer (2008) [math/0610610].
  92. [92]
    A.R. Gover and J. Šilhan, Higher symmetries of the conformal powers of the Laplacian on conformally flat manifolds, J. Math. Phys. 53 (2012) 032301 [arXiv:0911.5265].
  93. [93]
    J.-P. Michel, Higher symmetries of the Laplacian via quantization, Annales Inst. Fourier 64 (2014) 1581 [arXiv:1107.5840].
  94. [94]
    K. Alkalaev, Mixed-symmetry tensor conserved currents and AdS/CFT correspondence, J. Phys. A 46 (2013) 214007 [arXiv:1207.1079] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  95. [95]
    N. Boulanger, C. Iazeolla and P. Sundell, Unfolding Mixed-Symmetry Fields in AdS and the BMV Conjecture: I. General Formalism, JHEP 07 (2009) 013 [arXiv:0812.3615] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  96. [96]
    N. Boulanger, C. Iazeolla and P. Sundell, Unfolding Mixed-Symmetry Fields in AdS and the BMV Conjecture. II. Oscillator Realization, JHEP 07 (2009) 014 [arXiv:0812.4438] [INSPIRE].
  97. [97]
    E.D. Skvortsov, Gauge fields in (A)dS d and Connections of its symmetry algebra, J. Phys. A 42 (2009) 385401 [arXiv:0904.2919] [INSPIRE].ADSzbMATHGoogle Scholar
  98. [98]
    E.D. Skvortsov, Gauge fields in (A)dS d within the unfolded approach: algebraic aspects, JHEP 01 (2010) 106 [arXiv:0910.3334] [INSPIRE].
  99. [99]
    K. Alkalaev, Massless hook field in AdS d+1 from the holographic perspective, JHEP 01 (2013) 018 [arXiv:1210.0217] [INSPIRE].ADSCrossRefGoogle Scholar
  100. [100]
    W. Siegel, All Free Conformal Representations in All Dimensions, Int. J. Mod. Phys. A 4 (1989) 2015 [INSPIRE].
  101. [101]
    E. Angelopoulos and M. Laoues, Masslessness in n-dimensions, Rev. Math. Phys. 10 (1998) 271 [hep-th/9806100] [INSPIRE].
  102. [102]
    J.B. Ehrman, On the unitary irreducible representations of the universal covering group of the 3 + 2 deSitter group, Math. Proc. Cambridge Phil. Soc. 53 (1957) 290.ADSMathSciNetCrossRefzbMATHGoogle Scholar
  103. [103]
    X. Bekaert, Singletons and their maximal symmetry algebras, in Modern Mathematical Physics. Proceedings, 6th Summer School, Belgrade, Serbia, September 14–23, 2010, pp. 71–89 (2011) [arXiv:1111.4554] [INSPIRE].
  104. [104]
    N. Boulanger and E.D. Skvortsov, Higher-spin algebras and cubic interactions for simple mixed-symmetry fields in AdS spacetime, JHEP 09 (2011) 063 [arXiv:1107.5028] [INSPIRE].
  105. [105]
    R. Manvelyan, K. Mkrtchyan, R. Mkrtchyan and S. Theisen, On Higher Spin Symmetries in AdS 5, JHEP 10 (2013) 185 [arXiv:1304.7988] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Department of Physics and Research Institute of Basic ScienceKyung Hee UniversitySeoulKorea
  2. 2.Institut Denis Poisson, Université de Tours, Université d’Orléans, CNRS, Parc de GrandmontToursFrance

Personalised recommendations