Incoherent conductivity of holographic charge density waves

  • Blaise Goutéraux
  • Niko Jokela
  • Arttu Pönni
Open Access
Regular Article - Theoretical Physics


The DC resistivity of charge density waves weakly-pinned by disorder is controlled by diffusive, incoherent processes rather than slow momentum relaxation. The corresponding incoherent conductivity can be computed in the limit of zero disorder. We compute this transport coefficient in holographic spatially modulated breaking translations spontaneously. As a by-product of our analysis, we clarify how the boundary heat current is obtained from a conserved bulk current, defined as a suitable generalization of the Iyer-Wald Noether current of the appropriate Killing vector.


Holography and condensed matter physics (AdS/CMT) AdS-CFT Correspondence Gauge-gravity correspondence 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    J. Zaanen and O. Gunnarsson, Charged magnetic domain lines and the magnetism of high-T c oxides, Phys. Rev. B 40 (1989) 7391.Google Scholar
  2. [2]
    K. Machida, Magnetism in La 2 CuO 4 based compounds, Physica C 158 (1989) 192.Google Scholar
  3. [3]
    M. Kato, K. Machida, H. Nakanishi and M. Fujita, Soliton lattice modulation of incommensurate spin density wave in two dimensional hubbard model — a mean field study —, J. Phys. Soc. Japan 59 (1990) 1047.Google Scholar
  4. [4]
    J.M. Tranquada et al., Evidence for stripe correlations of spins and holes in copper oxide superconductors, Nature 375 (1995) 561.Google Scholar
  5. [5]
    S. Nakamura, H. Ooguri and C.-S. Park, Gravity dual of spatially modulated phase, Phys. Rev. D 81 (2010) 044018 [arXiv:0911.0679] [INSPIRE].
  6. [6]
    A. Donos and J.P. Gauntlett, Holographic striped phases, JHEP 08 (2011) 140 [arXiv:1106.2004] [INSPIRE].
  7. [7]
    O. Bergman, N. Jokela, G. Lifschytz and M. Lippert, Striped instability of a holographic Fermi-like liquid, JHEP 10 (2011) 034 [arXiv:1106.3883] [INSPIRE].
  8. [8]
    A. Donos, Striped phases from holography, JHEP 05 (2013) 059 [arXiv:1303.7211] [INSPIRE].
  9. [9]
    B. Withers, Black branes dual to striped phases, Class. Quant. Grav. 30 (2013) 155025 [arXiv:1304.0129] [INSPIRE].
  10. [10]
    B. Withers, Holographic checkerboards, JHEP 09 (2014) 102 [arXiv:1407.1085] [INSPIRE].
  11. [11]
    N. Jokela, M. Jarvinen and M. Lippert, Gravity dual of spin and charge density waves, JHEP 12 (2014) 083 [arXiv:1408.1397] [INSPIRE].
  12. [12]
    A. Donos and J.P. Gauntlett, Minimally packed phases in holography, JHEP 03 (2016) 148 [arXiv:1512.06861] [INSPIRE].
  13. [13]
    N. Jokela, M. Jarvinen and M. Lippert, Holographic sliding stripes, Phys. Rev. D 95 (2017) 086006 [arXiv:1612.07323] [INSPIRE].
  14. [14]
    S. Cremonini, L. Li and J. Ren, Holographic pair and charge density waves, Phys. Rev. D 95 (2017) 041901 [arXiv:1612.04385] [INSPIRE].
  15. [15]
    S. Cremonini, L. Li and J. Ren, Intertwined orders in holography: pair and charge density waves, JHEP 08 (2017) 081 [arXiv:1705.05390] [INSPIRE].
  16. [16]
    R.-G. Cai, L. Li, Y.-Q. Wang and J. Zaanen, Intertwined order and holography: the case of parity breaking pair density waves, Phys. Rev. Lett. 119 (2017) 181601 [arXiv:1706.01470] [INSPIRE].
  17. [17]
    G. Grüner, The dynamics of charge-density waves, Rev. Mod. Phys. 60 (1988) 1129.Google Scholar
  18. [18]
    L.V. Delacrétaz, B. Goutéraux, S.A. Hartnoll and A. Karlsson, Bad metals from fluctuating density waves, SciPost Phys. 3 (2017) 025 [arXiv:1612.04381] [INSPIRE].
  19. [19]
    L.V. Delacrétaz, B. Goutéraux, S.A. Hartnoll and A. Karlsson, Theory of hydrodynamic transport in fluctuating electronic charge density wave states, Phys. Rev. B 96 (2017) 195128 [arXiv:1702.05104] [INSPIRE].
  20. [20]
    C.P. Herzog, P. Kovtun, S. Sachdev and D.T. Son, Quantum critical transport, duality and M-theory, Phys. Rev. D 75 (2007) 085020 [hep-th/0701036] [INSPIRE].
  21. [21]
    R.A. Davison and B. Goutéraux, Dissecting holographic conductivities, JHEP 09 (2015) 090 [arXiv:1505.05092] [INSPIRE].
  22. [22]
    R.A. Davison, B. Goutéraux and S.A. Hartnoll, Incoherent transport in clean quantum critical metals, JHEP 10 (2015) 112 [arXiv:1507.07137] [INSPIRE].
  23. [23]
    S.A. Hartnoll and C.P. Herzog, Ohm’s Law at strong coupling: S duality and the cyclotron resonance, Phys. Rev. D 76 (2007) 106012 [arXiv:0706.3228] [INSPIRE].
  24. [24]
    S. Jain, Universal thermal and electrical conductivity from holography, JHEP 11 (2010) 092 [arXiv:1008.2944] [INSPIRE].
  25. [25]
    A. Amoretti, D. Areán, B. Goutéraux and D. Musso, Effective holographic theory of charge density waves, Phys. Rev. D 97 (2018) 086017 [arXiv:1711.06610] [INSPIRE].
  26. [26]
    A. Amoretti, D. Areán, B. Goutéraux and D. Musso, DC resistivity of quantum critical, charge density wave states from gauge-gravity duality, Phys. Rev. Lett. 120 (2018) 171603 [arXiv:1712.07994] [INSPIRE].
  27. [27]
    A. Donos and J.P. Gauntlett, Holographic charge density waves, Phys. Rev. D 87 (2013) 126008 [arXiv:1303.4398] [INSPIRE].
  28. [28]
    A. Donos and J.P. Gauntlett, The thermoelectric properties of inhomogeneous holographic lattices, JHEP 01 (2015) 035 [arXiv:1409.6875] [INSPIRE].
  29. [29]
    R.A. Davison, S.A. Gentle and B. Goutéraux, Impact of irrelevant deformations on thermodynamics and transport in holographic quantum critical states, to appear.Google Scholar
  30. [30]
    A. Donos and J.P. Gauntlett, Thermoelectric DC conductivities from black hole horizons, JHEP 11 (2014) 081 [arXiv:1406.4742] [INSPIRE].
  31. [31]
    D. Kastor, Komar integrals in higher (and lower) derivative gravity, Class. Quant. Grav. 25 (2008) 175007 [arXiv:0804.1832] [INSPIRE].
  32. [32]
    D. Kastor, S. Ray and J. Traschen, Enthalpy and the mechanics of AdS black holes, Class. Quant. Grav. 26 (2009) 195011 [arXiv:0904.2765] [INSPIRE].
  33. [33]
    R.M. Wald, Black hole entropy is the Noether charge, Phys. Rev. D 48 (1993) R3427 [gr-qc/9307038] [INSPIRE].
  34. [34]
    V. Iyer and R.M. Wald, Some properties of Noether charge and a proposal for dynamical black hole entropy, Phys. Rev. D 50 (1994) 846 [gr-qc/9403028] [INSPIRE].
  35. [35]
    H.-S. Liu, H. Lü and C.N. Pope, Holographic heat current as Noether current, JHEP 09 (2017) 146 [arXiv:1708.02329] [INSPIRE].
  36. [36]
    A. Donos, J.P. Gauntlett, T. Griffin and V. Ziogas, Incoherent transport for phases that spontaneously break translations, JHEP 04 (2018) 053 [arXiv:1801.09084] [INSPIRE].
  37. [37]
    I. Papadimitriou and K. Skenderis, Thermodynamics of asymptotically locally AdS spacetimes, JHEP 08 (2005) 004 [hep-th/0505190] [INSPIRE].
  38. [38]
    A. Donos and J.P. Gauntlett, Navier-Stokes equations on black hole horizons and DC thermoelectric conductivity, Phys. Rev. D 92 (2015) 121901 [arXiv:1506.01360] [INSPIRE].
  39. [39]
    A. Donos, J.P. Gauntlett, T. Griffin and L. Melgar, DC conductivity of magnetised holographic matter, JHEP 01 (2016) 113 [arXiv:1511.00713] [INSPIRE].
  40. [40]
    N. Jokela, M. Jarvinen and M. Lippert, Pinning of holographic sliding stripes, Phys. Rev. D 96 (2017) 106017 [arXiv:1708.07837] [INSPIRE].
  41. [41]
    L. Alberte, M. Ammon, M. Baggioli, A. Jiménez and O. Pujolàs, Black hole elasticity and gapped transverse phonons in holography, JHEP 01 (2018) 129 [arXiv:1708.08477] [INSPIRE].
  42. [42]
    T. Andrade, M. Baggioli, A. Krikun and N. Poovuttikul, Pinning of longitudinal phonons in holographic spontaneous helices, JHEP 02 (2018) 085 [arXiv:1708.08306] [INSPIRE].
  43. [43]
    T. Andrade, A. Krikun, K. Schalm and J. Zaanen, Doping the holographic Mott insulator, arXiv:1710.05791 [INSPIRE].
  44. [44]
    A. Donos et al., Holographic DC conductivity and Onsager relations, JHEP 07 (2017) 006 [arXiv:1704.05141] [INSPIRE].

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Nordita, KTH Royal Institute of Technology and Stockholm UniversityStockholmSweden
  2. 2.Department of Physics and Helsinki Institute of PhysicsUniversity of HelsinkiHelsinkiFinland

Personalised recommendations