Advertisement

Medium response in JEWEL and its impact on jet shape observables in heavy ion collisions

  • Raghav Kunnawalkam Elayavalli
  • Korinna Christine Zapp
Open Access
Regular Article - Theoretical Physics

Abstract

Realistic modeling of medium-jet interactions in heavy ion collisions is becoming increasingly important to successfully predict jet structure and shape observables. In Jewel, all partons belonging to the parton showers initiated by hard scattered partons undergo collisions with thermal partons from the medium, leading to both elastic and radiative energy loss. The recoiling medium partons carry away energy and momentum from the jet. Since the thermal component of these recoils’ momenta is part of the soft background activity, comparison with data requires the implementation of a subtraction procedure. We present two independent procedures through which background subtraction can be performed and discuss the impact of the medium recoil on jet shape observables. Keeping track of the medium response significantly improves the Jewel description of jet shape measurements.

Keywords

Heavy Ion Phenomenology 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    ATLAS collaboration, Measurements of the Nuclear Modification Factor for Jets in Pb+Pb Collisions at \( \sqrt{s_{\mathrm{NN}}}=2.76 \) TeV with the ATLAS Detector, Phys. Rev. Lett. 114 (2015) 072302 [arXiv:1411.2357] [INSPIRE].
  2. [2]
    ALICE collaboration, Measurement of jet suppression in central Pb-Pb collisions at \( \sqrt{s_{\mathrm{NN}}} = 2.76 \) TeV, Phys. Lett. B 746 (2015) 1 [arXiv:1502.01689] [INSPIRE].
  3. [3]
    CMS collaboration, Measurement of inclusive jet cross-sections in pp and PbPb collisions at \( \sqrt{s_{NN}} = 2.76 \) TeV, Phys. Rev. C (2016) [arXiv:1609.05383] [INSPIRE].
  4. [4]
    CMS collaboration, Measurement of transverse momentum relative to dijet systems in PbPb and pp collisions at \( \sqrt{s_{\mathrm{NN}}}=2.76 \) TeV, JHEP 01 (2016) 006 [arXiv:1509.09029] [INSPIRE].
  5. [5]
    CMS collaboration, Measurement of jet fragmentation in PbPb and pp collisions at \( \sqrt{s_{NN}}=2.76 \) TeV, Phys. Rev. C 90 (2014) 024908 [arXiv:1406.0932] [INSPIRE].
  6. [6]
    ATLAS collaboration, Measurement of inclusive jet charged-particle fragmentation functions in Pb+Pb collisions at \( \sqrt{s_{NN}}=2.76 \) TeV with the ATLAS detector, Phys. Lett. B 739 (2014) 320 [arXiv:1406.2979] [INSPIRE].
  7. [7]
    ATLAS collaboration, Internal structure of jets measured in Pb+Pb and pp collisions with the ATLAS detector at the LHC, ATLAS-CONF-2015-055 [INSPIRE].
  8. [8]
    CMS collaboration, Modification of jet shapes in PbPb collisions at \( \sqrt{s_{NN}}=2.76 \) TeV, Phys. Lett. B 730 (2014) 243 [arXiv:1310.0878] [INSPIRE].
  9. [9]
    CMS collaboration, Decomposing transverse momentum balance contributions for quenched jets in PbPb collisions at \( \sqrt{{\mathrm{s}}_{\mathrm{N}\ \mathrm{N}}}=2.76 \) TeV, JHEP 11 (2016) 055 [arXiv:1609.02466] [INSPIRE].
  10. [10]
    ALICE collaboration, L. Cunqueiro, Jet shapes in pp and Pb-Pb collisions at ALICE, Nucl. Phys. A 956 (2016) 593 [arXiv:1512.07882] [INSPIRE].
  11. [11]
    CMS collaboration, Splitting function in pp and PbPb collisions at 5.02 TeV, CMS-PAS-HIN-16-006 [INSPIRE].
  12. [12]
    ALICE collaboration, First measurement of jet mass in Pb-Pb and p-Pb collisions at the LHC, arXiv:1702.00804 [INSPIRE].
  13. [13]
    J.G. Milhano and K.C. Zapp, Origins of the di-jet asymmetry in heavy ion collisions, Eur. Phys. J. C 76 (2016) 288 [arXiv:1512.08107] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    K. Rajagopal, A.V. Sadofyev and W. van der Schee, Evolution of the jet opening angle distribution in holographic plasma, Phys. Rev. Lett. 116 (2016) 211603 [arXiv:1602.04187] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    J. Casalderrey-Solana, D. Gulhan, G. Milhano, D. Pablos and K. Rajagopal, Angular Structure of Jet Quenching Within a Hybrid Strong/Weak Coupling Model, JHEP 03 (2017) 135 [arXiv:1609.05842] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    R. Kunnawalkam Elayavalli, Jet structure modifications in heavy-ion collisions with JEWEL, J. Phys. Conf. Ser. 832 (2017) 012004 [arXiv:1610.09364] [INSPIRE].CrossRefGoogle Scholar
  17. [17]
    Y. Tachibana, N.-B. Chang and G.-Y. Qin, Full jet in quark-gluon plasma with hydrodynamic medium response, Phys. Rev. C 95 (2017) 044909 [arXiv:1701.07951] [INSPIRE].ADSGoogle Scholar
  18. [18]
    Y.-T. Chien and I. Vitev, Towards the understanding of jet shapes and cross sections in heavy ion collisions using soft-collinear effective theory, JHEP 05 (2016) 023 [arXiv:1509.07257] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    S.S. Gubser, S.S. Pufu and A. Yarom, Sonic booms and diffusion wakes generated by a heavy quark in thermal AdS/CFT, Phys. Rev. Lett. 100 (2008) 012301 [arXiv:0706.4307] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    P.M. Chesler and L.G. Yaffe, The stress-energy tensor of a quark moving through a strongly-coupled N = 4 supersymmetric Yang-Mills plasma: Comparing hydrodynamics and AdS/CFT, Phys. Rev. D 78 (2008) 045013 [arXiv:0712.0050] [INSPIRE].
  21. [21]
    P.M. Chesler and W. van der Schee, Early thermalization, hydrodynamics and energy loss in AdS/CFT, Int. J. Mod. Phys. E 24 (2015) 1530011 [arXiv:1501.04952] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  22. [22]
    J. Casalderrey-Solana, H. Liu, D. Mateos, K. Rajagopal and U.A. Wiedemann, Gauge/String Duality, Hot QCD and Heavy Ion Collisions, arXiv:1101.0618 [INSPIRE].
  23. [23]
    G.Y. Qin, A. Majumder, H. Song and U. Heinz, Energy and momentum deposited into a QCD medium by a jet shower, Phys. Rev. Lett. 103 (2009) 152303 [arXiv:0903.2255] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    R.B. Neufeld and B. Müller, The sound produced by a fast parton in the quark-gluon plasma is a ‘crescendo’, Phys. Rev. Lett. 103 (2009) 042301 [arXiv:0902.2950] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    E. Iancu and B. Wu, Thermalization of mini-jets in a quark-gluon plasma, JHEP 10 (2015) 155 [arXiv:1506.07871] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    I. Bouras, B. Betz, Z. Xu and C. Greiner, Mach cones in viscous heavy-ion collisions, Phys. Rev. C 90 (2014) 024904 [arXiv:1401.3019] [INSPIRE].ADSGoogle Scholar
  27. [27]
    Y. He, T. Luo, X.-N. Wang and Y. Zhu, Linear Boltzmann Transport for Jet Propagation in the quark-gluon Plasma: Elastic Processes and Medium Recoil, Phys. Rev. C 91 (2015) 054908 [arXiv:1503.03313] [INSPIRE].
  28. [28]
    Z. Gao, G.-L. Ma, G.-Y. Qin and H.-Z. Zhang, Overall momentum balance and redistribution of the lost energy in asymmetric dijet events in 2.76 ATeV Pb-Pb collisions with a multi-phase transport model, arXiv:1612.02548 [INSPIRE].
  29. [29]
    W. Chen, S. Cao, T. Luo, L.-G. Pang and X.-N. Wang, Evidence of jet-induced medium excitation in γ-hadron correlation in A+A collisions, arXiv:1704.03648 [INSPIRE].
  30. [30]
    K.C. Zapp, JEWEL 2.0.0: directions for use, Eur. Phys. J. C 74 (2014) 2762 [arXiv:1311.0048] [INSPIRE].
  31. [31]
    S. Floerchinger and K.C. Zapp, Hydrodynamics and Jets in Dialogue, Eur. Phys. J. C 74 (2014) 3189 [arXiv:1407.1782] [INSPIRE].CrossRefGoogle Scholar
  32. [32]
    K.C. Zapp, F. Krauss and U.A. Wiedemann, A perturbative framework for jet quenching, JHEP 03 (2013) 080 [arXiv:1212.1599] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    K.C. Zapp, Geometrical aspects of jet quenching in JEWEL, Phys. Lett. B 735 (2014) 157 [arXiv:1312.5536] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    K.C. Zapp, J. Stachel and U.A. Wiedemann, A local Monte Carlo framework for coherent QCD parton energy loss, JHEP 07 (2011) 118 [arXiv:1103.6252] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  35. [35]
    A. Buckley et al., Rivet user manual, Comput. Phys. Commun. 184 (2013) 2803 [arXiv:1003.0694] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    M. Cacciari, G.P. Salam and G. Soyez, FastJet User Manual, Eur. Phys. J. C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    ALICE collaboration, Measurement of charged jet suppression in Pb-Pb collisions at \( \sqrt{s_{NN}}=2.76 \) TeV, JHEP 03 (2014) 013 [arXiv:1311.0633] [INSPIRE].
  38. [38]
    C. Shen and U. Heinz, Collision Energy Dependence of Viscous Hydrodynamic Flow in Relativistic Heavy-Ion Collisions, Phys. Rev. C 85 (2012) 054902 [Erratum ibid. C 86 (2012) 049903] [arXiv:1202.6620] [INSPIRE].
  39. [39]
    C. Shen, Z. Qiu, H. Song, J. Bernhard, S. Bass and U. Heinz, The iEBE-VISHNU code package for relativistic heavy-ion collisions, Comput. Phys. Commun. 199 (2016) 61 [arXiv:1409.8164] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  40. [40]
    J. Pumplin, D.R. Stump, J. Huston, H.L. Lai, P.M. Nadolsky and W.K. Tung, New generation of parton distributions with uncertainties from global QCD analysis, JHEP 07 (2002) 012 [hep-ph/0201195] [INSPIRE].
  41. [41]
    K.J. Eskola, H. Paukkunen and C.A. Salgado, EPS09: A New Generation of NLO and LO Nuclear Parton Distribution Functions, JHEP 04 (2009) 065 [arXiv:0902.4154] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    M.R. Whalley, D. Bourilkov and R.C. Group, The Les Houches accord PDFs (LHAPDF) and LHAGLUE, hep-ph/0508110 [INSPIRE].
  43. [43]
    M. Cacciari, G.P. Salam and G. Soyez, The anti-k(t) jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    CMS collaboration, Determination of Jet Energy Calibration and Transverse Momentum Resolution in CMS, 2011 JINST 6 P11002 [arXiv:1107.4277] [INSPIRE].
  45. [45]
    ATLAS collaboration, P. Berta, ATLAS jet and missing-ET reconstruction, calibration and performance, Nucl. Part. Phys. Proc. 273-275 (2016) 1121 [INSPIRE].
  46. [46]
    ATLAS collaboration, Measurement of jet fragmentation in Pb+Pb and pp collisions at \( \sqrt{s_{\mathrm{NN}}}=2.76 \) TeV with the ATLAS detector at the LHC, Eur. Phys. J. C 77 (2017) 379 [arXiv:1702.00674] [INSPIRE].
  47. [47]
    O. Kodolova, I. Vardanian, A. Nikitenko and A. Oulianov, The performance of the jet identification and reconstruction in heavy ions collisions with CMS detector, Eur. Phys. J. C 50 (2007) 117 [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    W.T. Giele, E.W.N. Glover and D.A. Kosower, Jet investigations using the radial moment, Phys. Rev. D 57 (1998) 1878 [hep-ph/9706210] [INSPIRE].
  49. [49]
    A.J. Larkoski, S. Marzani and J. Thaler, Sudakov Safety in Perturbative QCD, Phys. Rev. D 91 (2015) 111501 [arXiv:1502.01719] [INSPIRE].ADSGoogle Scholar
  50. [50]
    M. Dasgupta, A. Fregoso, S. Marzani and G.P. Salam, Towards an understanding of jet substructure, JHEP 09 (2013) 029 [arXiv:1307.0007] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    A.J. Larkoski, S. Marzani, G. Soyez and J. Thaler, Soft Drop, JHEP 05 (2014) 146 [arXiv:1402.2657] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    Y. Mehtar-Tani and K. Tywoniuk, Groomed jets in heavy-ion collisions: sensitivity to medium-induced bremsstrahlung, JHEP 04 (2017) 125 [arXiv:1610.08930] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    J.G. Milhano, U.A. Wiedemann and K.C. Zapp, in preparation.Google Scholar
  54. [54]
    J.D. Bjorken, Energy Loss of Energetic Partons in Quark-Gluon Plasma: Possible Extinction of High p(t) Jets in Hadron-Hadron Collisions, FERMILAB-PUB-82-059-THY, FERMILAB-PUB-82-059-T, [INSPIRE].
  55. [55]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 Physics and Manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].
  56. [56]
    J. Casalderrey-Solana, D.C. Gulhan, J.G. Milhano, D. Pablos and K. Rajagopal, Predictions for Boson-Jet Observables and Fragmentation Function Ratios from a Hybrid Strong/Weak Coupling Model for Jet Quenching, JHEP 03 (2016) 053 [arXiv:1508.00815] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    Y. Mehtar-Tani, Theoretical Developments in QCD Jet Energy Loss, Nucl. Phys. A 956 (2016) 168 [arXiv:1602.01047] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    R. Kunnawalkam Elayavalli and K.C. Zapp, Simulating V+jet processes in heavy ion collisions with JEWEL, Eur. Phys. J. C 76 (2016) 695 [arXiv:1608.03099] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2017

Authors and Affiliations

  • Raghav Kunnawalkam Elayavalli
    • 1
  • Korinna Christine Zapp
    • 2
    • 3
  1. 1.Rutgers, The State University of New JerseyPiscatawayU.S.A.
  2. 2.Laboratório de Instrumentação e Física Experimental de Partículas (LIP)LisboaPortugal
  3. 3.Theory Department, CERNGenève 23Switzerland

Personalised recommendations