Advertisement

String-motivated one-loop amplitudes in gauge theories with half-maximal supersymmetry

  • Marcus Berg
  • Igor BuchbergerEmail author
  • Oliver Schlotterer
Open Access
Regular Article - Theoretical Physics

Abstract

We compute one-loop amplitudes in six-dimensional Yang-Mills theory with half-maximal supersymmetry from first principles: imposing gauge invariance and locality on an ansatz made from string-theory inspired kinematic building blocks yields unique expressions for the 3- and 4-point amplitudes. We check that the results are reproduced in the field-theory limit α → 0 of string amplitudes in K3 orbifolds, using simplifications made in a companion string-theory paper [1].

Keywords

Scattering Amplitudes Superstrings and Heterotic Strings Supersymmetric Gauge Theory Supersymmetric Effective Theories 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    M. Berg, I. Buchberger and O. Schlotterer, From maximal to minimal supersymmetry in string loop amplitudes, JHEP 04 (2017) 163 [arXiv:1603.05262] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    M. Bianchi and A.V. Santini, String predictions for near future colliders from one-loop scattering amplitudes around D-brane worlds, JHEP 12 (2006) 010 [hep-th/0607224] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    M. Bianchi and D. Consoli, Simplifying one-loop amplitudes in superstring theory, JHEP 01 (2016) 043 [arXiv:1508.00421] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  4. [4]
    P. Tourkine and P. Vanhove, One-loop four-graviton amplitudes in \( \mathcal{N}=4 \) supergravity models, Phys. Rev. D 87 (2013) 045001 [arXiv:1208.1255] [INSPIRE].
  5. [5]
    A. Ochirov and P. Tourkine, BCJ duality and double copy in the closed string sector, JHEP 05 (2014) 136 [arXiv:1312.1326] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    J.A. Minahan, One loop amplitudes on orbifolds and the renormalization of coupling constants, Nucl. Phys. B 298 (1988) 36 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  7. [7]
    E. Witten, Twistor-like transform in ten-dimensions, Nucl. Phys. B 266 (1986) 245 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    P.S. Howe, Pure spinors lines in superspace and ten-dimensional supersymmetric theories, Phys. Lett. B 258 (1991) 141 [Addendum ibid. B 259 (1991) 511] [INSPIRE].
  9. [9]
    P.S. Howe, Pure spinors, function superspaces and supergravity theories in ten-dimensions and eleven-dimensions, Phys. Lett. B 273 (1991) 90 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  10. [10]
    N. Berkovits, Super Poincaré covariant quantization of the superstring, JHEP 04 (2000) 018 [hep-th/0001035] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  11. [11]
    C.R. Mafra, O. Schlotterer, S. Stieberger and D. Tsimpis, A recursive method for SYM n-point tree amplitudes, Phys. Rev. D 83 (2011) 126012 [arXiv:1012.3981] [INSPIRE].ADSGoogle Scholar
  12. [12]
    C.R. Mafra and O. Schlotterer, Towards one-loop SYM amplitudes from the pure spinor BRST cohomology, Fortsch. Phys. 63 (2015) 105 [arXiv:1410.0668] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    C.R. Mafra and O. Schlotterer, Two-loop five-point amplitudes of super Yang-Mills and supergravity in pure spinor superspace, JHEP 10 (2015) 124 [arXiv:1505.02746] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  14. [14]
    C.R. Mafra and O. Schlotterer, One-loop superstring six-point amplitudes and anomalies in pure spinor superspace, JHEP 04 (2016) 148 [arXiv:1603.04790] [INSPIRE].ADSGoogle Scholar
  15. [15]
    Z. Bern, J.J.M. Carrasco and H. Johansson, New relations for gauge-theory amplitudes, Phys. Rev. D 78 (2008) 085011 [arXiv:0805.3993] [INSPIRE].
  16. [16]
    Z. Bern, J.J.M. Carrasco and H. Johansson, Perturbative quantum gravity as a double copy of gauge theory, Phys. Rev. Lett. 105 (2010) 061602 [arXiv:1004.0476] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  17. [17]
    J.J.M. Carrasco, M. Chiodaroli, M. Günaydin and R. Roiban, One-loop four-point amplitudes in pure and matter-coupled N ≤ 4 supergravity, JHEP 03 (2013) 056 [arXiv:1212.1146] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    H. Johansson and A. Ochirov, Pure gravities via color-kinematics duality for fundamental matter, JHEP 11 (2015) 046 [arXiv:1407.4772] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  19. [19]
    F.A. Berends and W.T. Giele, Recursive calculations for processes with n gluons, Nucl. Phys. B 306 (1988) 759 [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    C.R. Mafra and O. Schlotterer, Multiparticle SYM equations of motion and pure spinor BRST blocks, JHEP 07 (2014) 153 [arXiv:1404.4986] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    C.R. Mafra and O. Schlotterer, Berends-Giele recursions and the BCJ duality in superspace and components, JHEP 03 (2016) 097 [arXiv:1510.08846] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    C.R. Mafra, O. Schlotterer and S. Stieberger, Explicit BCJ numerators from pure spinors, JHEP 07 (2011) 092 [arXiv:1104.5224] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. [23]
    S. Lee, C.R. Mafra and O. Schlotterer, Non-linear gauge transformations in D = 10 SYM theory and the BCJ duality, JHEP 03 (2016) 090 [arXiv:1510.08843] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    F.A. Berends, W.T. Giele and H. Kuijf, Exact and approximate expressions for multi-gluon scattering, Nucl. Phys. B 333 (1990) 120 [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, One loop n point gauge theory amplitudes, unitarity and collinear limits, Nucl. Phys. B 425 (1994) 217 [hep-ph/9403226] [INSPIRE].
  26. [26]
    J. Polchinski, String theory. Volume 2: superstring theory and beyond, Cambridge University Press, Cambridge U.K. (1998).Google Scholar
  27. [27]
    M.B. Green, J.H. Schwarz and E. Witten, Superstring theory. Volume 2: loop amplitudes, anomalies and phenomenology, Cambridge University Press, Cambridge U.K. (1987).Google Scholar
  28. [28]
    W.-M. Chen, Y.-t. Huang and D.A. McGady, Anomalies without an action, arXiv:1402.7062 [INSPIRE].
  29. [29]
    C.R. Mafra and O. Schlotterer, Cohomology foundations of one-loop amplitudes in pure spinor superspace, arXiv:1408.3605 [INSPIRE].
  30. [30]
    L.E. Ibanez and A.M. Uranga, String theory and particle physics: an introduction to string phenomenology, Cambridge University Press, Cambridge U.K. (2012).Google Scholar
  31. [31]
    H. Elvang and M. Kiermaier, Stringy KLT relations, global symmetries and E 7(7) violation, JHEP 10 (2010) 108 [arXiv:1007.4813] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  32. [32]
    Z. Bern, J.J.M. Carrasco, L.J. Dixon, H. Johansson and R. Roiban, Simplifying multiloop integrands and ultraviolet divergences of gauge theory and gravity amplitudes, Phys. Rev. D 85 (2012) 105014 [arXiv:1201.5366] [INSPIRE].ADSGoogle Scholar
  33. [33]
    J. Polchinski, String theory. Volume 1: an introduction to the bosonic string, Cambridge University Press, Cambridge U.K. (1998).Google Scholar
  34. [34]
    A. Sen, One loop mass renormalization of unstable particles in superstring theory, JHEP 11 (2016) 050 [arXiv:1607.06500] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  35. [35]
    Z. Bern and A.G. Morgan, Massive loop amplitudes from unitarity, Nucl. Phys. B 467 (1996) 479 [hep-ph/9511336] [INSPIRE].
  36. [36]
    P. Anastasopoulos, M. Bianchi, E. Dudas and E. Kiritsis, Anomalies, anomalous U(1)’s and generalized Chern-Simons terms, JHEP 11 (2006) 057 [hep-th/0605225] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  37. [37]
    J.J.M. Carrasco, Gauge and gravity amplitude relations, arXiv:1506.00974 [INSPIRE].
  38. [38]
    Z. Bern, S. Davies, T. Dennen, A.V. Smirnov and V.A. Smirnov, Ultraviolet properties of N = 4 supergravity at four loops, Phys. Rev. Lett. 111(2013)231302 [arXiv:1309.2498] [INSPIRE].
  39. [39]
    Z. Bern, S. Davies and T. Dennen, Enhanced ultraviolet cancellations in \( \mathcal{N}=5 \) supergravity at four loops, Phys. Rev. D 90 (2014) 105011 [arXiv:1409.3089] [INSPIRE].
  40. [40]
    R.H. Boels, R.S. Isermann, R. Monteiro and D. O’Connell, Colour-kinematics duality for one-loop rational amplitudes, JHEP 04 (2013) 107 [arXiv:1301.4165] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  41. [41]
    Z. Bern, S. Davies, T. Dennen, Y.-t. Huang and J. Nohle, Color-kinematics duality for pure Yang-Mills and gravity at one and two loops, Phys. Rev. D 92 (2015) 045041 [arXiv:1303.6605] [INSPIRE].ADSMathSciNetGoogle Scholar
  42. [42]
    J. Nohle, Color-kinematics duality in one-loop four-gluon amplitudes with matter, Phys. Rev. D 90 (2014) 025020 [arXiv:1309.7416] [INSPIRE].ADSGoogle Scholar
  43. [43]
    M. Chiodaroli, Q. Jin and R. Roiban, Color/kinematics duality for general abelian orbifolds of N = 4 super Yang-Mills theory, JHEP 01 (2014) 152 [arXiv:1311.3600] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  44. [44]
    G. Mogull and D. O’Connell, Overcoming obstacles to colour-kinematics duality at two loops, JHEP 12 (2015) 135 [arXiv:1511.06652] [INSPIRE].ADSMathSciNetGoogle Scholar
  45. [45]
    Z. Bern, T. Dennen, Y.-t. Huang and M. Kiermaier, Gravity as the square of gauge theory, Phys. Rev. D 82 (2010) 065003 [arXiv:1004.0693] [INSPIRE].ADSGoogle Scholar
  46. [46]
    Z. Bern, C. Boucher-Veronneau and H. Johansson, N ≥ 4 supergravity amplitudes from gauge theory at one loop, Phys. Rev. D 84 (2011) 105035 [arXiv:1107.1935] [INSPIRE].ADSGoogle Scholar
  47. [47]
    A. Gregori, E. Kiritsis, C. Kounnas, N.A. Obers, P.M. Petropoulos and B. Pioline, R 2 corrections and nonperturbative dualities of N = 4 string ground states, Nucl. Phys. B 510 (1998) 423 [hep-th/9708062] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  48. [48]
    S. He and O. Schlotterer, New relations for gauge-theory and gravity amplitudes at loop level, Phys. Rev. Lett. 118 (2017) 161601 [arXiv:1612.00417] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    Z. Bern, J.J. Carrasco, W.-M. Chen, H. Johansson and R. Roiban, Gravity amplitudes as generalized double copies of gauge-theory amplitudes, Phys. Rev. Lett. 118 (2017) 181602 [arXiv:1701.02519] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    H. Johansson and Y.T. Huang, private communication.Google Scholar
  51. [51]
    S. He, O. Schlotterer and Y. Zhang, New BCJ representations for one-loop amplitudes in gauge theories and gravity, arXiv:1706.00640 [INSPIRE].
  52. [52]
    Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, Fusing gauge theory tree amplitudes into loop amplitudes, Nucl. Phys. B 435 (1995) 59 [hep-ph/9409265] [INSPIRE].
  53. [53]
    M.T. Grisaru, H.N. Pendleton and P. van Nieuwenhuizen, Supergravity and the S matrix, Phys. Rev. D 15 (1977) 996.ADSGoogle Scholar
  54. [54]
    M.T. Grisaru and H.N. Pendleton, Some properties of scattering amplitudes in supersymmetric theories, Nucl. Phys. B 124 (1977) 81 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  55. [55]
    S.J. Parke and T.R. Taylor, An amplitude for n gluon scattering, Phys. Rev. Lett. 56 (1986) 2459 [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    L.A. Barreiro and R. Medina, Revisiting the S-matrix approach to the open superstring low energy effective lagrangian, JHEP 10 (2012) 108 [arXiv:1208.6066] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  57. [57]
    L.A. Barreiro and R. Medina, RNS derivation of N-point disk amplitudes from the revisited S-matrix approach, Nucl. Phys. B 886 (2014) 870 [arXiv:1310.5942] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  58. [58]
    R.H. Boels and R. Medina, Graviton and gluon scattering from first principles, Phys. Rev. Lett. 118 (2017) 061602 [arXiv:1607.08246] [INSPIRE].CrossRefGoogle Scholar
  59. [59]
    R. Blumenhagen, D. Lüst and S. Theisen, Basic concepts of string theory, Springer, Germany (2013).Google Scholar
  60. [60]
    C. Angelantonj and A. Sagnotti, Open strings, Phys. Rept. 371 (2002) 1 [hep-th/0204089] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  61. [61]
    E.G. Gimon and C.V. Johnson, K3 orientifolds, Nucl. Phys. B 477 (1996) 715 [hep-th/9604129] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  62. [62]
    M.B. Green, J.H. Schwarz and L. Brink, N = 4 Yang-Mills and N = 8 supergravity as limits of string theories, Nucl. Phys. B 198 (1982) 474 [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    J. Broedel, C.R. Mafra, N. Matthes and O. Schlotterer, Elliptic multiple zeta values and one-loop superstring amplitudes, JHEP 07 (2015) 112 [arXiv:1412.5535] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  64. [64]
    Z. Bern and D.A. Kosower, The computation of loop amplitudes in gauge theories, Nucl. Phys. B 379 (1992) 451 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  65. [65]
    C. Schubert, Perturbative quantum field theory in the string inspired formalism, Phys. Rept. 355 (2001) 73 [hep-th/0101036] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  66. [66]
    N.E.J. Bjerrum-Bohr and P. Vanhove, Explicit cancellation of triangles in one-loop gravity amplitudes, JHEP 04 (2008) 065 [arXiv:0802.0868] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  67. [67]
    P. Tourkine, Tropical amplitudes, Annales Henri Poincaré 18 (2017) 2199 [arXiv:1309.3551] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  68. [68]
    N. Berkovits, Covariant quantization of the Green-Schwarz superstring in a Calabi-Yau background, Nucl. Phys. B 431 (1994) 258 [hep-th/9404162] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  69. [69]
    N. Berkovits, C. Vafa and E. Witten, Conformal field theory of AdS background with Ramond-Ramond flux, JHEP 03 (1999) 018 [hep-th/9902098] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  70. [70]
    C.R. Mafra, Towards field theory amplitudes from the cohomology of pure spinor superspace, JHEP 11 (2010) 096 [arXiv:1007.3639] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  71. [71]
    C.R. Mafra, O. Schlotterer, S. Stieberger and D. Tsimpis, Six open string disk amplitude in pure spinor superspace, Nucl. Phys. B 846 (2011) 359 [arXiv:1011.0994] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  72. [72]
    E.G. Gimon and J. Polchinski, Consistency conditions for orientifolds and d manifolds, Phys. Rev. D 54 (1996) 1667 [hep-th/9601038] [INSPIRE].ADSMathSciNetGoogle Scholar

Copyright information

© The Author(s) 2017

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Marcus Berg
    • 1
  • Igor Buchberger
    • 1
    Email author
  • Oliver Schlotterer
    • 2
  1. 1.Department of PhysicsKarlstad UniversityKarlstadSweden
  2. 2.Max-Planck-Institut für Gravitationsphysik, Albert-Einstein-InstitutPotsdamGermany

Personalised recommendations