Advertisement

An extremization principle for the entropy of rotating BPS black holes in AdS5

  • Seyed Morteza Hosseini
  • Kiril HristovEmail author
  • Alberto Zaffaroni
Open Access
Regular Article - Theoretical Physics

Abstract

We show that the Bekenstein-Hawking entropy of a class of BPS electrically charged rotating black holes in AdS5 × S 5 can be obtained by a simple extremization principle. We expect that this extremization corresponds to the attractor mechanism for BPS rotating black holes in five-dimensional gauged supergravity, which is still unknown. The expression to be extremized has a suggestive resemblance to anomaly polynomials and the supersymmetric Casimir energy recently studied for \( \mathcal{N}=4 \) super Yang-Mills.

Keywords

AdS-CFT Correspondence Black Holes in String Theory Supergravity Models 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    J.B. Gutowski and H.S. Reall, Supersymmetric AdS 5 black holes, JHEP 02 (2004) 006 [hep-th/0401042] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    J.B. Gutowski and H.S. Reall, General supersymmetric AdS 5 black holes, JHEP 04 (2004) 048 [hep-th/0401129] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    Z.W. Chong, M. Cvetič, H. Lü and C.N. Pope, Five-dimensional gauged supergravity black holes with independent rotation parameters, Phys. Rev. D 72 (2005) 041901 [hep-th/0505112] [INSPIRE].
  4. [4]
    Z.W. Chong, M. Cvetič, H. Lü and C.N. Pope, General non-extremal rotating black holes in minimal five-dimensional gauged supergravity, Phys. Rev. Lett. 95 (2005) 161301 [hep-th/0506029] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  5. [5]
    H.K. Kunduri, J. Lucietti and H.S. Reall, Supersymmetric multi-charge AdS 5 black holes, JHEP 04 (2006) 036 [hep-th/0601156] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    J. Kinney, J.M. Maldacena, S. Minwalla and S. Raju, An Index for 4 dimensional super conformal theories, Commun. Math. Phys. 275 (2007) 209 [hep-th/0510251] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    L. Grant, P.A. Grassi, S. Kim and S. Minwalla, Comments on 1/16 BPS Quantum States and Classical Configurations, JHEP 05 (2008) 049 [arXiv:0803.4183] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  8. [8]
    C.M. Chang and X. Yin, 1/16 BPS states in \( \mathcal{N}=4 \) super-Yang-Mills theory, Phys. Rev. D 88 (2013) 106005 [arXiv:1305.6314] [INSPIRE].ADSGoogle Scholar
  9. [9]
    C. Romelsberger, Counting chiral primaries in N = 1, D = 4 superconformal field theories, Nucl. Phys. B 747 (2006) 329 [hep-th/0510060] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    B. Assel, D. Cassani and D. Martelli, Localization on Hopf surfaces, JHEP 08 (2014) 123 [arXiv:1405.5144] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    J. Lorenzen and D. Martelli, Comments on the Casimir energy in supersymmetric field theories, JHEP 07 (2015) 001 [arXiv:1412.7463] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  12. [12]
    B. Assel, D. Cassani, L. Di Pietro, Z. Komargodski, J. Lorenzen and D. Martelli, The Casimir Energy in Curved Space and its Supersymmetric Counterpart, JHEP 07 (2015) 043 [arXiv:1503.05537] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  13. [13]
    N. Bobev, M. Bullimore and H.-C. Kim, Supersymmetric Casimir Energy and the Anomaly Polynomial, JHEP 09 (2015) 142 [arXiv:1507.08553] [INSPIRE].ADSMathSciNetGoogle Scholar
  14. [14]
    D. Martelli and J. Sparks, The character of the supersymmetric Casimir energy, JHEP 08 (2016) 117 [arXiv:1512.02521] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  15. [15]
    P. Benetti Genolini, D. Cassani, D. Martelli and J. Sparks, The holographic supersymmetric Casimir energy, Phys. Rev. D 95 (2017) 021902 [arXiv:1606.02724] [INSPIRE].
  16. [16]
    F. Brünner, D. Regalado and V.P. Spiridonov, Supersymmetric Casimir energy and SL(3, ) transformations, JHEP 07 (2017) 041 [arXiv:1611.03831] [INSPIRE].CrossRefGoogle Scholar
  17. [17]
    F. Benini, K. Hristov and A. Zaffaroni, Black hole microstates in AdS 4 from supersymmetric localization, JHEP 05 (2016) 054 [arXiv:1511.04085] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    F. Benini, K. Hristov and A. Zaffaroni, Exact microstate counting for dyonic black holes in AdS 4, Phys. Lett. B 771 (2017) 462 [arXiv:1608.07294] [INSPIRE].ADSGoogle Scholar
  19. [19]
    F. Benini and A. Zaffaroni, A topologically twisted index for three-dimensional supersymmetric theories, JHEP 07 (2015) 127 [arXiv:1504.03698] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  20. [20]
    F. Benini and A. Zaffaroni, Supersymmetric partition functions on Riemann surfaces, arXiv:1605.06120 [INSPIRE].
  21. [21]
    A. Cabo-Bizet, Factorising the 3D Topologically Twisted Index, JHEP 04 (2017) 115 [arXiv:1606.06341] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    C. Closset and H. Kim, Comments on twisted indices in 3d supersymmetric gauge theories, JHEP 08 (2016) 059 [arXiv:1605.06531] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  23. [23]
    C. Closset, H. Kim and B. Willett, Supersymmetric partition functions and the three-dimensional A-twist, JHEP 03 (2017) 074 [arXiv:1701.03171] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    S.M. Hosseini and A. Zaffaroni, Large-N matrix models for 3d \( \mathcal{N}=2 \) theories: twisted index, free energy and black holes, JHEP 08 (2016) 064 [arXiv:1604.03122] [INSPIR].
  25. [25]
    S.M. Hosseini and N. Mekareeya, Large-N topologically twisted index: necklace quivers, dualities and Sasaki-Einstein spaces, JHEP 08 (2016) 089 [arXiv:1604.03397] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  26. [26]
    A. Cabo-Bizet, V.I. Giraldo-Rivera and L.A. Pando Zayas, Microstate Counting of AdS 4 Hyperbolic Black Hole Entropy via the Topologically Twisted Index, arXiv:1701.07893 [INSPIRE].
  27. [27]
    S. Ferrara and R. Kallosh, Supersymmetry and attractors, Phys. Rev. D 54 (1996) 1514 [hep-th/9602136] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  28. [28]
    S.L. Cacciatori and D. Klemm, Supersymmetric AdS 4 black holes and attractors, JHEP 01 (2010) 085 [arXiv:0911.4926] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  29. [29]
    G. Dall’Agata and A. Gnecchi, Flow equations and attractors for black holes in N = 2 U(1) gauged supergravity, JHEP 03 (2011) 037 [arXiv:1012.3756] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  30. [30]
    K. Hristov and S. Vandoren, Static supersymmetric black holes in AdS 4 with spherical symmetry, JHEP 04 (2011) 047 [arXiv:1012.4314] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  31. [31]
    S. Katmadas, Static BPS black holes in U(1) gauged supergravity, JHEP 09 (2014) 027 [arXiv:1405.4901] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  32. [32]
    N. Halmagyi, Static BPS black holes in AdS 4 with general dyonic charges, JHEP 03 (2015) 032 [arXiv:1408.2831] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  33. [33]
    D. Klemm, N. Petri and M. Rabbiosi, Symplectically invariant flow equations for N = 2, D = 4 gauged supergravity with hypermultiplets, JHEP 04(2016) 008 [arXiv:1602.01334] [INSPIRE].ADSMathSciNetGoogle Scholar
  34. [34]
    A. Sen, Black hole entropy function and the attractor mechanism in higher derivative gravity, JHEP 09 (2005) 038 [hep-th/0506177] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  35. [35]
    J.F. Morales and H. Samtleben, Entropy function and attractors for AdS black holes, JHEP 10 (2006) 074 [hep-th/0608044] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  36. [36]
    M. Cvetič et al., Embedding AdS black holes in ten-dimensions and eleven-dimensions, Nucl. Phys. B 558 (1999) 96 [hep-th/9903214] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  37. [37]
    J.P. Gauntlett, J.B. Gutowski and N.V. Suryanarayana, A Deformation of AdS 5 × S 5, Class. Quant. Grav. 21 (2004) 5021 [hep-th/0406188] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  38. [38]
    H.K. Kunduri and J. Lucietti, Near-horizon geometries of supersymmetric AdS 5 black holes, JHEP 12 (2007) 015 [arXiv:0708.3695] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  39. [39]
    S. Kim and K.-M. Lee, 1/16-BPS Black Holes and Giant Gravitons in the AdS 5 × S 5 Space, JHEP 12 (2006) 077 [hep-th/0607085] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  40. [40]
    K. Hristov, Dimensional reduction of BPS attractors in AdS gauged supergravities, JHEP 12 (2014) 066 [arXiv:1409.8504] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    D. Gaiotto, A. Strominger and X. Yin, New connections between 4 − D and 5 − D black holes, JHEP 02 (2006) 024 [hep-th/0503217] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  42. [42]
    D. Gaiotto, A. Strominger and X. Yin, 5D black rings and 4D black holes, JHEP 02 (2006) 023 [hep-th/0504126] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  43. [43]
    K. Behrndt, G. Lopes Cardoso and S. Mahapatra, Exploring the relation between 4 − D and 5−D BPS solutions, Nucl. Phys. B 732(2006) 200 [hep-th/0506251] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  44. [44]
    N. Banerjee, B. de Wit and S. Katmadas, The Off-Shell 4D/5D Connection, JHEP 03 (2012) 061 [arXiv:1112.5371] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  45. [45]
    L. Andrianopoli, S. Ferrara and M.A. Lledó, Scherk-Schwarz reduction of D = 5 special and quaternionic geometry, Class. Quant. Grav. 21 (2004) 4677 [hep-th/0405164] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  46. [46]
    G. Lopes Cardoso, J.M. Oberreuter and J. Perz, Entropy function for rotating extremal black holes in very special geometry, JHEP 05 (2007) 025 [hep-th/0701176] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  47. [47]
    O. Aharony, M. Berkooz, J. Louis and A. Micu, Non-Abelian structures in compactifications of M-theory on seven-manifolds with SU(3) structure, JHEP 09 (2008) 108 [arXiv:0806.1051] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  48. [48]
    H. Looyestijn, E. Plauschinn and S. Vandoren, New potentials from Scherk-Schwarz reductions, JHEP 12 (2010) 016 [arXiv:1008.4286] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  49. [49]
    L. Andrianopoli, S. Ferrara and M.A. Lledó, No-scale D = 5 supergravity from Scherk-Schwarz reduction of D = 6 theories, JHEP 06 (2004) 018 [hep-th/0406018] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  50. [50]
    L. Andrianopoli, M.A. Lledó and M. Trigiante, The Scherk-Schwarz mechanism as a flux compactification with internal torsion, JHEP 05 (2005) 051 [hep-th/0502083] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  51. [51]
    K. Hristov and A. Rota, 6d-5d-4d reduction of BPS attractors in flat gauged supergravities, Nucl. Phys. B 897 (2015) 213 [arXiv:1410.5386] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  52. [52]
    D. Astefanesei, N. Banerjee and S. Dutta, Near horizon data and physical charges of extremal AdS black holes, Nucl. Phys. B 853 (2011) 63 [arXiv:1104.4121] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  53. [53]
    E. Witten, Mirror manifolds and topological field theory, hep-th/9112056 [INSPIRE].
  54. [54]
    I. Papadimitriou, Supercurrent anomalies in 4d SCFTs, JHEP 07 (2017) 038 [arXiv:1703.04299] [INSPIRE].CrossRefGoogle Scholar
  55. [55]
    O.S. An, Anomaly-corrected supersymmetry algebra and supersymmetric holographic renormalization, arXiv:1703.09607 [INSPIRE].
  56. [56]
    A. Arabi Ardehali, J.T. Liu and P. Szepietowski, High-Temperature Expansion of Supersymmetric Partition Functions, JHEP 07 (2015) 113 [arXiv:1502.07737] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  57. [57]
    A. Arabi Ardehali, High-temperature asymptotics of supersymmetric partition functions, JHEP 07 (2016) 025 [arXiv:1512.03376] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  58. [58]
    E. Shaghoulian, Modular invariance on S 1 × S 3 and circle fibrations, arXiv:1612.05257 [INSPIRE].
  59. [59]
    L. Di Pietro and M. Honda, Cardy Formula for 4d SUSY Theories and Localization, JHEP 04 (2017) 055 [arXiv:1611.00380] [INSPIRE].CrossRefGoogle Scholar
  60. [60]
    F. Nieri and S. Pasquetti, Factorisation and holomorphic blocks in 4d, JHEP 11 (2015) 155 [arXiv:1507.00261] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  61. [61]
    S. Yankielowicz and Y. Zhou, Supersymmetric Rényi entropy and Anomalies in 6d (1, 0) SCFTs, JHEP 04 (2017) 128 [arXiv:1702.03518] [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    S. Ferrara and R. Kallosh, Universality of supersymmetric attractors, Phys. Rev. D 54 (1996) 1525 [hep-th/9603090] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  63. [63]
    A.H. Chamseddine, S. Ferrara, G.W. Gibbons and R. Kallosh, Enhancement of supersymmetry near 5 − D black hole horizon, Phys. Rev. D 55 (1997) 3647 [hep-th/9610155] [INSPIRE].ADSMathSciNetGoogle Scholar
  64. [64]
    R. Kallosh, A. Rajaraman and W.K. Wong, Supersymmetric rotating black holes and attractors, Phys. Rev. D 55 (1997) 3246 [hep-th/9611094] [INSPIRE].ADSMathSciNetGoogle Scholar
  65. [65]
    S. Barisch-Dick, G. Lopes Cardoso, M. Haack and S. Nampuri, Extremal black brane solutions in five-dimensional gauged supergravity, JHEP 02 (2013) 103 [arXiv:1211.0832] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  66. [66]
    D. Klemm, N. Petri and M. Rabbiosi, Black string first order flow in N = 2, d = 5 abelian gauged supergravity, JHEP 01 (2017) 106 [arXiv:1610.07367] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  67. [67]
    A. Amariti and C. Toldo, Betti multiplets, flows across dimensions and c-extremization, JHEP 07 (2017) 040 [arXiv:1610.08858] [INSPIRE].CrossRefGoogle Scholar
  68. [68]
    S.M. Hosseini, A. Nedelin and A. Zaffaroni, The Cardy limit of the topologically twisted index and black strings in AdS 5, JHEP 04 (2017) 014 [arXiv:1611.09374] [INSPIRE].ADSCrossRefGoogle Scholar
  69. [69]
    F. Benini and N. Bobev, Exact two-dimensional superconformal R-symmetry and c-extremization, Phys. Rev. Lett. 110 (2013) 061601 [arXiv:1211.4030] [INSPIRE].
  70. [70]
    F. Benini and N. Bobev, Two-dimensional SCFTs from wrapped branes and c-extremization, JHEP 06 (2013) 005 [arXiv:1302.4451] [INSPIRE].ADSCrossRefGoogle Scholar
  71. [71]
    L. Andrianopoli et al., N = 2 supergravity and N = 2 super Yang-Mills theory on general scalar manifolds: Symplectic covariance, gaugings and the momentum map, J. Geom. Phys. 23 (1997) 111 [hep-th/9605032] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  72. [72]
    J. Louis and A. Micu, Type 2 theories compactified on Calabi-Yau threefolds in the presence of background fluxes, Nucl. Phys. B 635 (2002) 395 [hep-th/0202168] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  73. [73]
    N. Halmagyi, M. Petrini and A. Zaffaroni, BPS black holes in AdS 4 from M-theory, JHEP 08 (2013) 124 [arXiv:1305.0730] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  74. [74]
    V.P. Spiridonov and G.S. Vartanov, Elliptic hypergeometric integrals and ’t Hooft anomaly matching conditions, JHEP 06 (2012) 016 [arXiv:1203.5677] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© The Author(s) 2017

Authors and Affiliations

  • Seyed Morteza Hosseini
    • 1
    • 2
  • Kiril Hristov
    • 3
    Email author
  • Alberto Zaffaroni
    • 1
    • 2
  1. 1.Dipartimento di FisicaUniversità di Milano-BicoccaMilanoItaly
  2. 2.INFN, sezione di Milano-BicoccaMilanoItaly
  3. 3.Institute for Nuclear Research and Nuclear EnergyBulgarian Academy of SciencesSofiaBulgaria

Personalised recommendations