Advertisement

Line operators in the Standard Model

  • David Tong
Open Access
Regular Article - Theoretical Physics

Abstract

There is an ambiguity in the gauge group of the Standard Model. The group is G = SU(3) × SU(2) × U(1)/Γ, where Γ is a subgroup of Z 6 which cannot be determined by current experiments. We describe how the electric, magnetic and dyonic line operators of the theory depend on the choice of Γ. We also explain how the periodicity of the theta angles, associated to each factor of G, differ.

Keywords

Discrete Symmetries Gauge Symmetry Wilson, ’t Hooft and Polyakov loops 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    O. Aharony, N. Seiberg and Y. Tachikawa, Reading between the lines of four-dimensional gauge theories, JHEP 08 (2013) 115 [arXiv:1305.0318] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    E. Witten, Dyons of charge eθ/2π, Phys. Lett. B 86 (1979) 283 [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    F. Wilczek, Two applications of axion electrodynamics, Phys. Rev. Lett. 58 (1987) 1799 [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    X.-L. Qi, T. Hughes and S.-C. Zhang, Topological field theory of time-reversal invariant insulators, Phys. Rev. B 78 (2008) 195424 [arXiv:0802.3537] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    X.-L. Qi, R. Li, J. Zang and S.-C. Zhang, Inducing a magnetic monopole with topological surface states, Science 323 (2009) 1184 [arXiv:0811.1303] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    K.G. Wilson, Confinement of quarks, Phys. Rev. D 10 (1974) 2445 [INSPIRE].ADSGoogle Scholar
  7. [7]
    G. ’t Hooft, On the phase transition towards permanent quark confinement, Nucl. Phys. B 138 (1978) 1 [INSPIRE].
  8. [8]
    A. Kapustin, Wilson-’t Hooft operators in four-dimensional gauge theories and S-duality, Phys. Rev. D 74 (2006) 025005 [hep-th/0501015] [INSPIRE].ADSMathSciNetGoogle Scholar
  9. [9]
    P. Goddard, J. Nuyts and D.I. Olive, Gauge theories and magnetic charge, Nucl. Phys. B 125 (1977) 1 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  10. [10]
    E. Corrigan and D.I. Olive, Color and magnetic monopoles, Nucl. Phys. B 110 (1976) 237 [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    M. Henningson, Wilson-’t Hooft operators and the theta angle, JHEP 05 (2006) 065 [hep-th/0603188] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  12. [12]
    E. Witten, Supersymmetric index in four-dimensional gauge theories, Adv. Theor. Math. Phys. 5 (2002) 841 [hep-th/0006010] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    Y. Tachikawa, Magnetic discrete gauge field in the confining vacua and the supersymmetric index, JHEP 03 (2015) 035 [arXiv:1412.2830] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    V. Baluni, CP violating effects in QCD, Phys. Rev. D 19 (1979) 2227 [INSPIRE].ADSGoogle Scholar
  15. [15]
    R.J. Crewther, P. Di Vecchia, G. Veneziano and E. Witten, Chiral estimate of the electric dipole moment of the neutron in quantum chromodynamics, Phys. Lett. B 88 (1979) 123 [Erratum ibid. B 91 (1980) 487] [INSPIRE].
  16. [16]
    A.A. Anselm and A.A. Johansen, Can electroweak θ-term be observable?, Nucl. Phys. B 412 (1994) 553 [hep-ph/9305271] [INSPIRE].
  17. [17]
    J. Preskill, Magnetic monopoles, Ann. Rev. Nucl. Part. Sci. 34 (1984) 461 [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    J. Polchinski, Monopoles, duality and string theory, Int. J. Mod. Phys. A 19S1 (2004) 145 [hep-th/0304042] [INSPIRE].
  19. [19]
    T. Banks and N. Seiberg, Symmetries and strings in field theory and gravity, Phys. Rev. D 83 (2011) 084019 [arXiv:1011.5120] [INSPIRE].ADSGoogle Scholar
  20. [20]
    N. Arkani-Hamed, L. Motl, A. Nicolis and C. Vafa, The string landscape, black holes and gravity as the weakest force, JHEP 06 (2007) 060 [hep-th/0601001] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  21. [21]
    MoEDAL collaboration, B. Acharya et al., The physics programme of the MoEDAL experiment at the LHC, Int. J. Mod. Phys. A 29 (2014) 1430050 [arXiv:1405.7662] [INSPIRE].

Copyright information

© The Author(s) 2017

Authors and Affiliations

  1. 1.Department of Applied Mathematics and Theoretical PhysicsUniversity of CambridgeCambridgeU.K.

Personalised recommendations