Advertisement

A radiative neutrino mass model with SIMP dark matter

  • Shu-Yu Ho
  • Takashi Toma
  • Koji Tsumura
Open Access
Regular Article - Theoretical Physics

Abstract

We propose the first viable radiative seesaw model, in which the neutrino masses are induced radiatively via the two-loop Feynman diagram involving Strongly Interacting Massive Particles (SIMP). The stability of SIMP dark matter (DM) is ensured by a 5 discrete symmetry, through which the DM annihilation rate is dominated by the 3 → 2 self-annihilating processes. The right amount of thermal relic abundance can be obtained with perturbative couplings in the resonant SIMP scenario, while the astrophysical bounds inferred from the Bullet cluster and spherical halo shapes can be satisfied. We show that SIMP DM is able to maintain kinetic equilibrium with thermal plasma until the freeze-out temperature via the Yukawa interactions associated with neutrino mass generation.

Keywords

Cosmology of Theories beyond the SM Neutrino Physics 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    Super-Kamiokande collaboration, R. Wendell et al., Atmospheric neutrino oscillation analysis with sub-leading effects in Super-Kamiokande I, II and III, Phys. Rev. D 81 (2010) 092004 [arXiv:1002.3471] [INSPIRE].
  2. [2]
    SAGE collaboration, J.N. Abdurashitov et al., Measurement of the solar neutrino capture rate with gallium metal. III: Results for the 2002-2007 data-taking period, Phys. Rev. C 80 (2009) 015807 [arXiv:0901.2200] [INSPIRE].
  3. [3]
    Double CHOOZ collaboration, Y. Abe et al., Reactor electron antineutrino disappearance in the Double CHOOZ experiment, Phys. Rev. D 86 (2012) 052008 [arXiv:1207.6632] [INSPIRE].
  4. [4]
    KamLAND collaboration, A. Gando et al., Constraints on θ 13 from A Three-Flavor Oscillation Analysis of Reactor Antineutrinos at KamLAND, Phys. Rev. D 83 (2011) 052002 [arXiv:1009.4771] [INSPIRE].
  5. [5]
    K.G. Begeman, A.H. Broeils and R.H. Sanders, Extended rotation curves of spiral galaxies: Dark haloes and modified dynamics, Mon. Not. Roy. Astron. Soc. 249 (1991) 523 [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    R. Massey et al., Dark matter maps reveal cosmic scaffolding, Nature 445 (2007) 286 [astro-ph/0701594] [INSPIRE].
  7. [7]
    D. Harvey, R. Massey, T. Kitching, A. Taylor and E. Tittley, The non-gravitational interactions of dark matter in colliding galaxy clusters, Science 347 (2015) 1462 [arXiv:1503.07675] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    Planck collaboration, R. Adam et al., Planck 2015 results. I. Overview of products and scientific results, Astron. Astrophys. 594 (2016) A1 [arXiv:1502.01582] [INSPIRE].
  9. [9]
    P. Minkowski, μeγ at a Rate of One Out of 109 Muon Decays?, Phys. Lett. B 67 (1977) 421 [INSPIRE].
  10. [10]
    T. Yanagida, Horizontal symmetry and masses of neutrinos, Conf. Proc. C 7902131 (1979) 95 [INSPIRE].Google Scholar
  11. [11]
    M. Gell-Mann, P. Ramond and R. Slansky, Complex Spinors and Unified Theories, Conf. Proc. C 790927 (1979) 315 [arXiv:1306.4669] [INSPIRE].Google Scholar
  12. [12]
    A. Zee, A Theory of Lepton Number Violation, Neutrino Majorana Mass and Oscillation, Phys. Lett. B 93 (1980) 389 [Erratum ibid. B 95 (1980) 461] [INSPIRE].
  13. [13]
    A. Zee, Charged Scalar Field and Quantum Number Violations, Phys. Lett. B 161 (1985) 141 [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    A. Zee, Quantum Numbers of Majorana Neutrino Masses, Nucl. Phys. B 264 (1986) 99 [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    K.S. Babu, Model of ‘Calculable’ Majorana Neutrino Masses, Phys. Lett. B 203 (1988) 132 [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    Y. Hochberg, E. Kuflik, T. Volansky and J.G. Wacker, Mechanism for Thermal Relic Dark Matter of Strongly Interacting Massive Particles, Phys. Rev. Lett. 113 (2014) 171301 [arXiv:1402.5143] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    B.S. Acharya, M. Fairbairn and E. Hardy, Glueball dark matter in non-standard cosmologies, arXiv:1704.01804 [INSPIRE].
  18. [18]
    N. Bernal, C. Garcia-Cely and R. Rosenfeld, WIMP and SIMP Dark Matter from the Spontaneous Breaking of a Global Group, JCAP 04 (2015) 012 [arXiv:1501.01973] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    N. Bernal, C. Garcia-Cely and R. Rosenfeld, 3 WIMP and SIMP Dark Matter from a Global U(1) Breaking, Nucl. Part. Phys. Proc. 267-269 (2015) 353 [INSPIRE].
  20. [20]
    N. Bernal, X. Chu, C. Garcia-Cely, T. Hambye and B. Zaldivar, Production Regimes for Self-Interacting Dark Matter, JCAP 03 (2016) 018 [arXiv:1510.08063] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    N. Bernal and X. Chu, 2 SIMP Dark Matter, JCAP 01 (2016) 006 [arXiv:1510.08527] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    N. Bernal, X. Chu and J. Pradler, Simply split strongly interacting massive particles, Phys. Rev. D 95 (2017) 115023 [arXiv:1702.04906] [INSPIRE].Google Scholar
  23. [23]
    S.-M. Choi and H.M. Lee, SIMP dark matter with gauged Z 3 symmetry, JHEP 09 (2015) 063 [arXiv:1505.00960] [INSPIRE].CrossRefGoogle Scholar
  24. [24]
    S.-M. Choi, Y.-J. Kang and H.M. Lee, On thermal production of self-interacting dark matter, JHEP 12 (2016) 099 [arXiv:1610.04748] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    S.-M. Choi and H.M. Lee, Resonant SIMP dark matter, Phys. Lett. B 758 (2016) 47 [arXiv:1601.03566] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  26. [26]
    S.-M. Choi, H.M. Lee and M.-S. Seo, Cosmic abundances of SIMP dark matter, JHEP 04 (2017) 154 [arXiv:1702.07860] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    J. Cline, H. Liu, T. Slatyer and W. Xue, Enabling Forbidden Dark Matter, arXiv:1702.07716 [INSPIRE].
  28. [28]
    U.K. Dey, T.N. Maity and T.S. Ray, Light Dark Matter through Assisted Annihilation, JCAP 03 (2017) 045 [arXiv:1612.09074] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    M. Farina, D. Pappadopulo, J.T. Ruderman and G. Trevisan, Phases of Cannibal Dark Matter, JHEP 12 (2016) 039 [arXiv:1607.03108] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    L. Forestell, D.E. Morrissey and K. Sigurdson, Non-Abelian Dark Forces and the Relic Densities of Dark Glueballs, Phys. Rev. D 95 (2017) 015032 [arXiv:1605.08048] [INSPIRE].
  31. [31]
    J. Halverson, B.D. Nelson and F. Ruehle, String Theory and the Dark Glueball Problem, Phys. Rev. D 95 (2017) 043527 [arXiv:1609.02151] [INSPIRE].
  32. [32]
    M. Hansen, K. Langæble and F. Sannino, SIMP model at NNLO in chiral perturbation theory, Phys. Rev. D 92 (2015) 075036 [arXiv:1507.01590] [INSPIRE].
  33. [33]
    Y. Hochberg, E. Kuflik, H. Murayama, T. Volansky and J.G. Wacker, Model for Thermal Relic Dark Matter of Strongly Interacting Massive Particles, Phys. Rev. Lett. 115 (2015) 021301 [arXiv:1411.3727] [INSPIRE].
  34. [34]
    Y. Hochberg, E. Kuflik and H. Murayama, SIMP Spectroscopy, JHEP 05 (2016) 090 [arXiv:1512.07917] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    A. Kamada, M. Yamada, T.T. Yanagida and K. Yonekura, SIMP from a strong U(1) gauge theory with a monopole condensation, Phys. Rev. D 94 (2016) 055035 [arXiv:1606.01628] [INSPIRE].
  36. [36]
    A. Kamada, H. Kim and T. Sekiguchi, Axion-like particle assisted strongly interacting massive particle, arXiv:1704.04505 [INSPIRE].
  37. [37]
    E. Kuflik, M. Perelstein, N.R.-L. Lorier and Y.-D. Tsai, Elastically Decoupling Dark Matter, Phys. Rev. Lett. 116 (2016) 221302 [arXiv:1512.04545] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    E. Kuflik, M. Perelstein, N.R.-L. Lorier and Y.-D. Tsai, Phenomenology of ELDER Dark Matter, arXiv:1706.05381 [INSPIRE].
  39. [39]
    H.M. Lee and M.-S. Seo, Communication with SIMP dark mesons via Z -portal, Phys. Lett. B 748 (2015) 316 [arXiv:1504.00745] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  40. [40]
    H.M. Lee and M.-S. Seo, Models for SIMP dark matter and dark photon, AIP Conf. Proc. 1743 (2016) 060003 [arXiv:1510.05116] [INSPIRE].
  41. [41]
    D. Pappadopulo, J.T. Ruderman and G. Trevisan, Dark matter freeze-out in a nonrelativistic sector, Phys. Rev. D 94 (2016) 035005 [arXiv:1602.04219] [INSPIRE].
  42. [42]
    K. Tsumura, M. Yamada and Y. Yamaguchi, Gravitational wave from dark sector with dark pion, arXiv:1704.00219 [INSPIRE].
  43. [43]
    N. Yamanaka, S. Fujibayashi, S. Gongyo and H. Iida, Dark matter in the hidden gauge theory, arXiv:1411.2172 [INSPIRE].
  44. [44]
    O.D. Elbert, J.S. Bullock, S. Garrison-Kimmel, M. Rocha, J. Oñorbe and A.H.G. Peter, Core formation in dwarf haloes with self-interacting dark matter: no fine-tuning necessary, Mon. Not. Roy. Astron. Soc. 453 (2015) 29 [arXiv:1412.1477] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    R. Massey et al., The behaviour of dark matter associated with four bright cluster galaxies in the 10 kpc core of Abell 3827, Mon. Not. Roy. Astron. Soc. 449 (2015) 3393 [arXiv:1504.03388] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    F. Kahlhoefer, K. Schmidt-Hoberg, J. Kummer and S. Sarkar, On the interpretation of dark matter self-interactions in Abell 3827, Mon. Not. Roy. Astron. Soc. 452 (2015) L54 [arXiv:1504.06576] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    E. Ma, Verifiable radiative seesaw mechanism of neutrino mass and dark matter, Phys. Rev. D 73 (2006) 077301 [hep-ph/0601225] [INSPIRE].
  48. [48]
    E. Ma, Z(3) Dark Matter and Two-Loop Neutrino Mass, Phys. Lett. B 662 (2008) 49 [arXiv:0708.3371] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    L.M. Krauss, S. Nasri and M. Trodden, A Model for neutrino masses and dark matter, Phys. Rev. D 67 (2003) 085002 [hep-ph/0210389] [INSPIRE].
  50. [50]
    M. Aoki, S. Kanemura and O. Seto, Neutrino mass, Dark Matter and Baryon Asymmetry via TeV-Scale Physics without Fine-Tuning, Phys. Rev. Lett. 102 (2009) 051805 [arXiv:0807.0361] [INSPIRE].
  51. [51]
    M. Gustafsson, J.M. No and M.A. Rivera, Predictive Model for Radiatively Induced Neutrino Masses and Mixings with Dark Matter, Phys. Rev. Lett. 110 (2013) 211802 [Erratum ibid. 112 (2014) 259902] [arXiv:1212.4806] [INSPIRE].
  52. [52]
    S.-Y. Ho, T. Toma and K. Tsumura, Systematic U(1)BL extensions of loop-induced neutrino mass models with dark matter, Phys. Rev. D 94 (2016) 033007 [arXiv:1604.07894] [INSPIRE].
  53. [53]
    M. Aoki and T. Toma, Impact of semi-annihilation of ℤ 3 symmetric dark matter with radiative neutrino masses, JCAP 09 (2014) 016 [arXiv:1405.5870] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    R. Ding, Z.-L. Han, Y. Liao and W.-P. Xie, Radiative neutrino mass with ℤ 3 dark matter: from relic density to LHC signatures, JHEP 05 (2016) 030 [arXiv:1601.06355] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    M.C. Gonzalez-Garcia, M. Maltoni and T. Schwetz, Updated fit to three neutrino mixing: status of leptonic CP-violation, JHEP 11 (2014) 052 [arXiv:1409.5439] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    MEG collaboration, A.M. Baldini et al., Search for the lepton flavour violating decay μ + → e+ γ with the full dataset of the MEG experiment, Eur. Phys. J. C 76 (2016) 434 [arXiv:1605.05081] [INSPIRE].
  57. [57]
    ATLAS collaboration, Search for direct production of charginos, neutralinos and sleptons in final states with two leptons and missing transverse momentum in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, JHEP 05 (2014) 071 [arXiv:1403.5294] [INSPIRE].
  58. [58]
    Particle Data Group collaboration, K.A. Olive et al., Review of Particle Physics, Chin. Phys. C 38 (2014) 090001 [INSPIRE].
  59. [59]
    M. Carena, A. de Gouvêa, A. Freitas and M. Schmitt, Invisible Z boson decays at e + e colliders, Phys. Rev. D 68 (2003) 113007 [hep-ph/0308053] [INSPIRE].
  60. [60]
    ATLAS, CMS collaborations, Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC pp collision data at \( \sqrt{s}=7 \) and 8 TeV, JHEP 08 (2016) 045 [arXiv:1606.02266] [INSPIRE].
  61. [61]
    LHC Higgs Cross section Working Group collaboration, J.R. Andersen et al., Handbook of LHC Higgs Cross sections: 3. Higgs Properties, arXiv:1307.1347 [INSPIRE].
  62. [62]
    ATLAS, CMS collaborations, Combined Measurement of the Higgs Boson Mass in pp Collisions at \( \sqrt{s}=7 \) and 8 TeV with the ATLAS and CMS Experiments, Phys. Rev. Lett. 114 (2015) 191803 [arXiv:1503.07589] [INSPIRE].
  63. [63]
    M.E. Peskin and T. Takeuchi, Estimation of oblique electroweak corrections, Phys. Rev. D 46 (1992) 381 [INSPIRE].ADSGoogle Scholar
  64. [64]
    C.P. Burgess, S. Godfrey, H. Konig, D. London and I. Maksymyk, A Global fit to extended oblique parameters, Phys. Lett. B 326 (1994) 276 [hep-ph/9307337] [INSPIRE].
  65. [65]
    M. Baak et al., The Electroweak Fit of the Standard Model after the Discovery of a New Boson at the LHC, Eur. Phys. J. C 72 (2012) 2205 [arXiv:1209.2716] [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    Gfitter Group collaboration, M. Baak et al., The global electroweak fit at NNLO and prospects for the LHC and ILC, Eur. Phys. J. C 74 (2014) 3046 [arXiv:1407.3792] [INSPIRE].
  67. [67]
    K. Kannike, Vacuum Stability Conditions From Copositivity Criteria, Eur. Phys. J. C 72 (2012) 2093 [arXiv:1205.3781] [INSPIRE].ADSCrossRefGoogle Scholar
  68. [68]
    E.W. Kolb and M.S. Turner, The Early Universe, Front. Phys. 69 (1990) 1 [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  69. [69]
    P. Gondolo and G. Gelmini, Cosmic abundances of stable particles: Improved analysis, Nucl. Phys. B 360 (1991) 145 [INSPIRE].ADSCrossRefGoogle Scholar
  70. [70]
    Planck collaboration, P.A.R. Ade et al., Planck 2015 results. XIII. Cosmological parameters, Astron. Astrophys. 594 (2016) A13 [arXiv:1502.01589] [INSPIRE].
  71. [71]
    M. Markevitch et al., Direct constraints on the dark matter self-interaction cross-section from the merging galaxy cluster 1E0657-56, Astrophys. J. 606 (2004) 819 [astro-ph/0309303] [INSPIRE].
  72. [72]
    D. Clowe, A. Gonzalez and M. Markevitch, Weak lensing mass reconstruction of the interacting cluster 1E0657-558: Direct evidence for the existence of dark matter, Astrophys. J. 604 (2004) 596 [astro-ph/0312273] [INSPIRE].
  73. [73]
    S.W. Randall, M. Markevitch, D. Clowe, A.H. Gonzalez and M. Bradac, Constraints on the Self-Interaction Cross-Section of Dark Matter from Numerical Simulations of the Merging Galaxy Cluster 1E 0657-56, Astrophys. J. 679 (2008) 1173 [arXiv:0704.0261] [INSPIRE].ADSCrossRefGoogle Scholar
  74. [74]
    A.H.G. Peter, M. Rocha, J.S. Bullock and M. Kaplinghat, Cosmological Simulations with Self-Interacting Dark Matter II: Halo Shapes vs. Observations, Mon. Not. Roy. Astron. Soc. 430 (2013) 105 [arXiv:1208.3026] [INSPIRE].
  75. [75]
    L.E. Ibáñez and G.G. Ross, Discrete gauge symmetries and the origin of baryon and lepton number conservation in supersymmetric versions of the standard model, Nucl. Phys. B 368 (1992) 3 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  76. [76]
    B. Rai and G. Senjanović, Gravity and domain wall problem, Phys. Rev. D 49 (1994) 2729 [hep-ph/9301240] [INSPIRE].

Copyright information

© The Author(s) 2017

Authors and Affiliations

  1. 1.Department of Physics, California Institute of TechnologyPasadenaU.S.A.
  2. 2.Physik-Department T30d, Technische Universität MünchenGarchingGermany
  3. 3.Department of PhysicsKyoto UniversityKyotoJapan

Personalised recommendations