Advertisement

Systematics of quark/gluon tagging

  • Philippe Gras
  • Stefan Höche
  • Deepak Kar
  • Andrew Larkoski
  • Leif Lönnblad
  • Simon Plätzer
  • Andrzej Siódmok
  • Peter Skands
  • Gregory Soyez
  • Jesse Thaler
Open Access
Regular Article - Theoretical Physics

Abstract

By measuring the substructure of a jet, one can assign it a “quark” or “gluon” tag. In the eikonal (double-logarithmic) limit, quark/gluon discrimination is determined solely by the color factor of the initiating parton (C F versus C A ). In this paper, we confront the challenges faced when going beyond this leading-order understanding, using both parton-shower generators and first-principles calculations to assess the impact of higher-order perturbative and nonperturbative physics. Working in the idealized context of electron-positron collisions, where one can define a proxy for quark and gluon jets based on the Lorentz structure of the production vertex, we find a fascinating interplay between perturbative shower effects and nonperturbative hadronization effects. Turning to proton-proton collisions, we highlight a core set of measurements that would constrain current uncertainties in quark/gluon tagging and improve the overall modeling of jets at the Large Hadron Collider.

Keywords

Jets QCD Phenomenology 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Supplementary material

13130_2017_6376_MOESM1_ESM.zip (3.9 mb)
ESM 1 (ZIP 3981 kb)

References

  1. [1]
    J.R. Andersen et al., Les Houches 2015: Physics at TeV Colliders Standard Model Working Group Report, arXiv:1605.04692 [INSPIRE].
  2. [2]
    H.P. Nilles and K.H. Streng, Quark-Gluon Separation in Three Jet Events, Phys. Rev. D 23 (1981) 1944.ADSGoogle Scholar
  3. [3]
    L.M. Jones, Tests for Determining the Parton Ancestor of a Hadron Jet, Phys. Rev. D 39 (1989) 2550.ADSGoogle Scholar
  4. [4]
    Z. Fodor, How to See the Differences Between Quark and Gluon Jets, Phys. Rev. D 41 (1990) 1726.ADSGoogle Scholar
  5. [5]
    L. Jones, Towards a systematic jet classification, Phys. Rev. D 42 (1990) 811 [INSPIRE].ADSGoogle Scholar
  6. [6]
    L. Lönnblad, C. Peterson and T. Rognvaldsson, Using neural networks to identify jets, Nucl. Phys. B 349 (1991) 675 [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    J. Pumplin, How to tell quark jets from gluon jets, Phys. Rev. D 44 (1991) 2025.ADSGoogle Scholar
  8. [8]
    J. Gallicchio and M.D. Schwartz, Quark and Gluon Tagging at the LHC, Phys. Rev. Lett. 107 (2011) 172001 [arXiv:1106.3076] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    J. Gallicchio and M.D. Schwartz, Quark and Gluon Jet Substructure, JHEP 04 (2013) 090 [arXiv:1211.7038] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    D. Krohn, M.D. Schwartz, T. Lin and W.J. Waalewijn, Jet Charge at the LHC, Phys. Rev. Lett. 110 (2013) 212001 [arXiv:1209.2421] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    F. Pandolfi and D. Del Re, Search for the Standard Model Higgs Boson in the HZZllqq Decay Channel at CMS. Ph.D. Thesis, Zurich, ETH (2012).Google Scholar
  12. [12]
    CMS collaboration, Search for a Higgs boson in the decay channel HZZ * to \( q\overline{q}{\ell}^{-}{\ell}^{+} \) in pp collisions at \( \sqrt{s}=7 \) TeV, JHEP 04 (2012) 036 [arXiv:1202.1416] [INSPIRE].
  13. [13]
    A.J. Larkoski, G.P. Salam and J. Thaler, Energy Correlation Functions for Jet Substructure, JHEP 06 (2013) 108 [arXiv:1305.0007] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  14. [14]
    A.J. Larkoski, J. Thaler and W.J. Waalewijn, Gaining (Mutual) Information about Quark/Gluon Discrimination, JHEP 11 (2014) 129 [arXiv:1408.3122] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    B. Bhattacherjee, S. Mukhopadhyay, M.M. Nojiri, Y. Sakaki and B.R. Webber, Associated jet and subjet rates in light-quark and gluon jet discrimination, JHEP 04 (2015) 131 [arXiv:1501.04794] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    D. Ferreira de Lima, P. Petrov, D. Soper and M. Spannowsky, quark-gluon tagging with Shower Deconstruction: Unearthing dark matter and Higgs couplings, Phys. Rev. D 95 (2017) 034001 [arXiv:1607.06031] [INSPIRE].
  17. [17]
    B. Bhattacherjee, S. Mukhopadhyay, M.M. Nojiri, Y. Sakaki and B.R. Webber, quark-gluon discrimination in the search for gluino pair production at the LHC, JHEP 01 (2017) 044 [arXiv:1609.08781] [INSPIRE].
  18. [18]
    P.T. Komiske, E.M. Metodiev and M.D. Schwartz, Deep learning in color: towards automated quark/gluon jet discrimination, JHEP 01 (2017) 110 [arXiv:1612.01551] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    J. Davighi and P. Harris, Fractal based observables to probe jet substructure of quarks and gluons, arXiv:1703.00914 [INSPIRE].
  20. [20]
    ATLAS collaboration, Light-quark and gluon jet discrimination in pp collisions at \( \sqrt{s}=7 \) TeV with the ATLAS detector, Eur. Phys. J. C 74 (2014) 3023 [arXiv:1405.6583] [INSPIRE].
  21. [21]
    ATLAS collaboration, Jet energy measurement and its systematic uncertainty in proton-proton collisions at \( \sqrt{s}=7 \) TeV with the ATLAS detector, Eur. Phys. J. C 75 (2015) 17 [arXiv:1406.0076] [INSPIRE].
  22. [22]
    CMS collaboration, Measurement of electroweak production of two jets in association with a Z boson in proton-proton collisions at \( \sqrt{s}=8 \) TeV, Eur. Phys. J. C 75 (2015) 66 [arXiv:1410.3153] [INSPIRE].
  23. [23]
    ATLAS collaboration, Search for high-mass diboson resonances with boson-tagged jets in proton-proton collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, JHEP 12 (2015) 055 [arXiv:1506.00962] [INSPIRE].
  24. [24]
    CMS collaboration, Search for the standard model Higgs boson produced through vector boson fusion and decaying to \( b\overline{b} \), Phys. Rev. D 92 (2015) 032008 [arXiv:1506.01010] [INSPIRE].
  25. [25]
    ATLAS collaboration, Measurement of the charged-particle multiplicity inside jets from \( \sqrt{s}=8 \) TeV pp collisions with the ATLAS detector, Eur. Phys. J. C 76 (2016) 322 [arXiv:1602.00988] [INSPIRE].
  26. [26]
    C.F. Berger, T. Kucs and G.F. Sterman, Event shape/energy flow correlations, Phys. Rev. D 68 (2003) 014012 [hep-ph/0303051] [INSPIRE].
  27. [27]
    L.G. Almeida, S.J. Lee, G. Perez, G.F. Sterman, I. Sung and J. Virzi, Substructure of high-p T Jets at the LHC, Phys. Rev. D 79 (2009) 074017 [arXiv:0807.0234] [INSPIRE].ADSGoogle Scholar
  28. [28]
    S.D. Ellis, C.K. Vermilion, J.R. Walsh, A. Hornig and C. Lee, Jet Shapes and Jet Algorithms in SCET, JHEP 11 (2010) 101 [arXiv:1001.0014] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    A.J. Larkoski, D. Neill and J. Thaler, Jet Shapes with the Broadening Axis, JHEP 04 (2014) 017 [arXiv:1401.2158] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    S. Catani, G. Turnock and B.R. Webber, Jet broadening measures in e + e annihilation, Phys. Lett. B 295 (1992) 269 [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    P.E.L. Rakow and B.R. Webber, Transverse Momentum Moments of Hadron Distributions in QCD Jets, Nucl. Phys. B 191 (1981) 63 [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    R.K. Ellis and B.R. Webber, QCD Jet Broadening in Hadron Hadron Collisions, Conf. Proc. C 860623 (1986) 74 [INSPIRE].Google Scholar
  33. [33]
    E. Farhi, A QCD Test for Jets, Phys. Rev. Lett. 39 (1977) 1587 [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    A. Hocker et al., TMVA - Toolkit for Multivariate Data Analysis, PoS(ACAT)040 [physics/0703039] [INSPIRE].
  35. [35]
    M. Dasgupta and G.P. Salam, Resummation of nonglobal QCD observables, Phys. Lett. B 512 (2001) 323 [hep-ph/0104277] [INSPIRE].
  36. [36]
    M. Dasgupta, F. Dreyer, G.P. Salam and G. Soyez, Small-radius jets to all orders in QCD, JHEP 04 (2015) 039 [arXiv:1411.5182] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    G.P. Korchemsky and G.F. Sterman, Power corrections to event shapes and factorization, Nucl. Phys. B 555 (1999) 335 [hep-ph/9902341] [INSPIRE].
  38. [38]
    G.P. Korchemsky and S. Tafat, On power corrections to the event shape distributions in QCD, JHEP 10 (2000) 010 [hep-ph/0007005] [INSPIRE].
  39. [39]
    T. Sjöstrand et al., An Introduction to PYTHIA 8.2, Comput. Phys. Commun. 191 (2015) 159 [arXiv:1410.3012] [INSPIRE].
  40. [40]
    M. Bahr et al., HERWIG++ Physics and Manual, Eur. Phys. J. C 58 (2008) 639 [arXiv:0803.0883] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    J. Bellm et al., HERWIG++ 2.7 Release Note, arXiv:1310.6877 [INSPIRE].
  42. [42]
    J. Bellm et al., HERWIG 7.0/HERWIG++ 3.0 release note, Eur. Phys. J. C 76 (2016) 196 [arXiv:1512.01178] [INSPIRE].
  43. [43]
    T. Gleisberg et al., Event generation with SHERPA 1.1, JHEP 02 (2009) 007 [arXiv:0811.4622] [INSPIRE].
  44. [44]
    N. Fischer, S. Prestel, M. Ritzmann and P. Skands, Vincia for Hadron Colliders, Eur. Phys. J. C 76 (2016) 589 [arXiv:1605.06142] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    Z. Nagy and D.E. Soper, A parton shower based on factorization of the quantum density matrix, JHEP 06 (2014) 097 [arXiv:1401.6364] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    C. Flensburg, G. Gustafson and L. Lönnblad, Inclusive and Exclusive Observables from Dipoles in High Energy Collisions, JHEP 08 (2011) 103 [arXiv:1103.4321] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    L. Lönnblad, ARIADNE version 4: A program for simulation of QCD cascades implementing the color dipole model, Comput. Phys. Commun. 71 (1992) 15 [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    S. Höche and S. Prestel, The midpoint between dipole and parton showers, Eur. Phys. J. C 75 (2015) 461 [arXiv:1506.05057] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    A. Buckley et al., Rivet user manual, Comput. Phys. Commun. 184 (2013) 2803 [arXiv:1003.0694] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    ALEPH collaboration, A. Heister et al., Studies of QCD at e + e centre-of-mass energies between 91-GeV and 209-GeV, Eur. Phys. J. C 35 (2004) 457 [INSPIRE].
  51. [51]
    DELPHI collaboration, J. Abdallah et al., A Study of the energy evolution of event shape distributions and their means with the DELPHI detector at LEP, Eur. Phys. J. C 29 (2003) 285 [hep-ex/0307048] [INSPIRE].
  52. [52]
    L3 collaboration, P. Achard et al., Studies of hadronic event structure in e + e annihilation from 30-GeV to 209-GeV with the L3 detector, Phys. Rept. 399 (2004) 71 [hep-ex/0406049] [INSPIRE].
  53. [53]
    OPAL collaboration, G. Abbiendi et al., Measurement of event shape distributions and moments in e + e hadrons at 91-209 GeV and a determination of α s, Eur. Phys. J. C 40 (2005) 287 [hep-ex/0503051] [INSPIRE].
  54. [54]
    J. Gallicchio and M.D. Schwartz, Pure Samples of Quark and Gluon Jets at the LHC, JHEP 10 (2011) 103 [arXiv:1104.1175] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    A. Buckley and C. Pollard, QCD-aware partonic jet clustering for truth-jet flavour labelling, Eur. Phys. J. C 76 (2016) 71 [arXiv:1507.00508] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    A. Banfi, G.P. Salam and G. Zanderighi, Infrared safe definition of jet flavor, Eur. Phys. J. C 47 (2006) 113 [hep-ph/0601139] [INSPIRE].
  57. [57]
    C. Frye, A.J. Larkoski, M.D. Schwartz and K. Yan, Precision physics with pile-up insensitive observables, arXiv:1603.06375 [INSPIRE].
  58. [58]
    C. Frye, A.J. Larkoski, M.D. Schwartz and K. Yan, Factorization for groomed jet substructure beyond the next-to-leading logarithm, JHEP 07 (2016) 064 [arXiv:1603.09338] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    A.J. Larkoski and J. Thaler, Unsafe but Calculable: Ratios of Angularities in Perturbative QCD, JHEP 09 (2013) 137 [arXiv:1307.1699] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    A.J. Larkoski, I. Moult and D. Neill, Toward Multi-Differential Cross sections: Measuring Two Angularities on a Single Jet, JHEP 09 (2014) 046 [arXiv:1401.4458] [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    M. Procura, W.J. Waalewijn and L. Zeune, Resummation of Double-Differential Cross sections and Fully-Unintegrated Parton Distribution Functions, JHEP 02 (2015) 117 [arXiv:1410.6483] [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    A. Hornig, Y. Makris and T. Mehen, Jet Shapes in Dijet Events at the LHC in SCET, JHEP 04 (2016) 097 [arXiv:1601.01319] [INSPIRE].ADSGoogle Scholar
  63. [63]
    W.J. Waalewijn, Calculating the Charge of a Jet, Phys. Rev. D 86 (2012) 094030 [arXiv:1209.3019] [INSPIRE].ADSGoogle Scholar
  64. [64]
    H.-M. Chang, M. Procura, J. Thaler and W.J. Waalewijn, Calculating Track-Based Observables for the LHC, Phys. Rev. Lett. 111 (2013) 102002 [arXiv:1303.6637] [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
    H.-M. Chang, M. Procura, J. Thaler and W.J. Waalewijn, Calculating Track Thrust with Track Functions, Phys. Rev. D 88 (2013) 034030 [arXiv:1306.6630] [INSPIRE].ADSGoogle Scholar
  66. [66]
    M. Cacciari and G.P. Salam, Dispelling the N 3 myth for the k t jet-finder, Phys. Lett. B 641 (2006) 57 [hep-ph/0512210] [INSPIRE].
  67. [67]
    M. Cacciari, G.P. Salam and G. Soyez, FastJet User Manual, Eur. Phys. J. C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].ADSCrossRefGoogle Scholar
  68. [68]
    M. Cacciari, G.P. Salam and G. Soyez, The anti-k t jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE].ADSCrossRefGoogle Scholar
  69. [69]
    D. Bertolini, T. Chan and J. Thaler, Jet Observables Without Jet Algorithms, JHEP 04 (2014) 013 [arXiv:1310.7584] [INSPIRE].ADSCrossRefGoogle Scholar
  70. [70]
    G. Salam, E t Scheme, unpublished.Google Scholar
  71. [71]
    G.C. Blazey et al., Run II jet physics, hep-ex/0005012 [INSPIRE].
  72. [72]
    Y.L. Dokshitzer, A. Lucenti, G. Marchesini and G.P. Salam, On the QCD analysis of jet broadening, JHEP 01 (1998) 011 [hep-ph/9801324] [INSPIRE].
  73. [73]
    A. Banfi, G.P. Salam and G. Zanderighi, Principles of general final-state resummation and automated implementation, JHEP 03 (2005) 073 [hep-ph/0407286] [INSPIRE].
  74. [74]
    Y.L. Dokshitzer, G.D. Leder, S. Moretti and B.R. Webber, Better jet clustering algorithms, JHEP 08 (1997) 001 [hep-ph/9707323] [INSPIRE].
  75. [75]
    M. Wobisch and T. Wengler, Hadronization corrections to jet cross-sections in deep inelastic scattering, hep-ph/9907280 [INSPIRE].
  76. [76]
    J.M. Butterworth, A.R. Davison, M. Rubin and G.P. Salam, Jet substructure as a new Higgs search channel at the LHC, Phys. Rev. Lett. 100 (2008) 242001 [arXiv:0802.2470] [INSPIRE].ADSCrossRefGoogle Scholar
  77. [77]
    S.D. Ellis, C.K. Vermilion and J.R. Walsh, Techniques for improved heavy particle searches with jet substructure, Phys. Rev. D 80 (2009) 051501 [arXiv:0903.5081] [INSPIRE].ADSGoogle Scholar
  78. [78]
    S.D. Ellis, C.K. Vermilion and J.R. Walsh, Recombination Algorithms and Jet Substructure: Pruning as a Tool for Heavy Particle Searches, Phys. Rev. D 81 (2010) 094023 [arXiv:0912.0033] [INSPIRE].ADSGoogle Scholar
  79. [79]
    D. Krohn, J. Thaler and L.-T. Wang, Jet Trimming, JHEP 02 (2010) 084 [arXiv:0912.1342] [INSPIRE].ADSCrossRefGoogle Scholar
  80. [80]
    M. Dasgupta, A. Fregoso, S. Marzani and G.P. Salam, Towards an understanding of jet substructure, JHEP 09 (2013) 029 [arXiv:1307.0007] [INSPIRE].ADSCrossRefGoogle Scholar
  81. [81]
    A.J. Larkoski, S. Marzani, G. Soyez and J. Thaler, Soft Drop, JHEP 05 (2014) 146 [arXiv:1402.2657] [INSPIRE].ADSCrossRefGoogle Scholar
  82. [82]
    A.J. Larkoski and J. Thaler, Aspects of jets at 100 TeV, Phys. Rev. D 90 (2014) 034010 [arXiv:1406.7011] [INSPIRE].ADSGoogle Scholar
  83. [83]
    A.J. Larkoski, S. Marzani and J. Thaler, Sudakov Safety in Perturbative QCD, Phys. Rev. D 91 (2015) 111501 [arXiv:1502.01719] [INSPIRE].ADSGoogle Scholar
  84. [84]
    CMS collaboration, Splitting function in pp and PbPb collisions at 5.02 TeV, CMS-PAS-HIN-16-006.
  85. [85]
    M. Jankowiak and A.J. Larkoski, Jet Substructure Without Trees, JHEP 06 (2011) 057 [arXiv:1104.1646] [INSPIRE].ADSCrossRefGoogle Scholar
  86. [86]
    I. Moult, L. Necib and J. Thaler, New Angles on Energy Correlation Functions, JHEP 12 (2016) 153 [arXiv:1609.07483] [INSPIRE].ADSCrossRefGoogle Scholar
  87. [87]
    J. Thaler and K. Van Tilburg, Identifying Boosted Objects with N-subjettiness, JHEP 03 (2011) 015 [arXiv:1011.2268] [INSPIRE].ADSCrossRefGoogle Scholar
  88. [88]
    J. Thaler and K. Van Tilburg, Maximizing Boosted Top Identification by Minimizing N-subjettiness, JHEP 02 (2012) 093 [arXiv:1108.2701] [INSPIRE].ADSCrossRefGoogle Scholar
  89. [89]
    G.P. Salam, L. Schunk and G. Soyez, Dichroic subjettiness ratios to distinguish colour flows in boosted boson tagging, JHEP 03 (2017) 022 [arXiv:1612.03917] [INSPIRE].ADSCrossRefGoogle Scholar
  90. [90]
    D.E. Soper and M. Spannowsky, Finding physics signals with shower deconstruction, Phys. Rev. D 84 (2011) 074002 [arXiv:1102.3480] [INSPIRE].ADSGoogle Scholar
  91. [91]
    D.E. Soper and M. Spannowsky, Finding top quarks with shower deconstruction, Phys. Rev. D 87 (2013) 054012 [arXiv:1211.3140] [INSPIRE].ADSGoogle Scholar
  92. [92]
    D.E. Soper and M. Spannowsky, Finding physics signals with event deconstruction, Phys. Rev. D 89 (2014) 094005 [arXiv:1402.1189] [INSPIRE].ADSGoogle Scholar
  93. [93]
    A. Hornig, C. Lee and G. Ovanesyan, Effective Predictions of Event Shapes: Factorized, Resummed and Gapped Angularity Distributions, JHEP 05 (2009) 122 [arXiv:0901.3780] [INSPIRE].ADSCrossRefGoogle Scholar
  94. [94]
    A.V. Manohar and M.B. Wise, Power suppressed corrections to hadronic event shapes, Phys. Lett. B 344 (1995) 407 [hep-ph/9406392] [INSPIRE].
  95. [95]
    Y.L. Dokshitzer and B.R. Webber, Calculation of power corrections to hadronic event shapes, Phys. Lett. B 352 (1995) 451 [hep-ph/9504219] [INSPIRE].
  96. [96]
    G.P. Salam and D. Wicke, Hadron masses and power corrections to event shapes, JHEP 05 (2001) 061 [hep-ph/0102343] [INSPIRE].
  97. [97]
    C. Lee and G.F. Sterman, Momentum Flow Correlations from Event Shapes: Factorized Soft Gluons and Soft-Collinear Effective Theory, Phys. Rev. D 75 (2007) 014022 [hep-ph/0611061] [INSPIRE].
  98. [98]
    V. Mateu, I.W. Stewart and J. Thaler, Power Corrections to Event Shapes with Mass-Dependent Operators, Phys. Rev. D 87 (2013) 014025 [arXiv:1209.3781] [INSPIRE].ADSGoogle Scholar
  99. [99]
    I.W. Stewart, F.J. Tackmann and W.J. Waalewijn, Dissecting Soft Radiation with Factorization, Phys. Rev. Lett. 114 (2015) 092001 [arXiv:1405.6722] [INSPIRE].ADSCrossRefGoogle Scholar
  100. [100]
    Y.I. Azimov, Y.L. Dokshitzer, V.A. Khoze and S.I. Troyan, Similarity of Parton and Hadron Spectra in QCD Jets, Z. Phys. C 27 (1985) 65 [INSPIRE].ADSGoogle Scholar
  101. [101]
    Y.L. Dokshitzer, G. Marchesini and B.R. Webber, Dispersive approach to power behaved contributions in QCD hard processes, Nucl. Phys. B 469 (1996) 93 [hep-ph/9512336] [INSPIRE].
  102. [102]
    A. Guffanti and G.E. Smye, Nonperturbative effects in the W and Z transverse momentum distribution, JHEP 10 (2000) 025 [hep-ph/0007190] [INSPIRE].
  103. [103]
    S. Gieseke, M.H. Seymour and A. Siodmok, A model of non-perturbative gluon emission in an initial state parton shower, JHEP 06 (2008) 001 [arXiv:0712.1199] [INSPIRE].ADSCrossRefGoogle Scholar
  104. [104]
    M. Dasgupta, F.A. Dreyer, G.P. Salam and G. Soyez, Inclusive jet spectrum for small-radius jets, JHEP 06 (2016) 057 [arXiv:1602.01110] [INSPIRE].ADSCrossRefGoogle Scholar
  105. [105]
    P. Skands, S. Carrazza and J. Rojo, Tuning PYTHIA 8.1: the Monash 2013 Tune, Eur. Phys. J. C 74 (2014) 3024 [arXiv:1404.5630] [INSPIRE].
  106. [106]
    G. Miu and T. Sjöstrand, W production in an improved parton shower approach, Phys. Lett. B 449 (1999) 313 [hep-ph/9812455] [INSPIRE].
  107. [107]
    J.R. Christiansen and P.Z. Skands, String Formation Beyond Leading Colour, JHEP 08 (2015) 003 [arXiv:1505.01681] [INSPIRE].ADSCrossRefGoogle Scholar
  108. [108]
    S. Gieseke, C. Rohr and A. Siodmok, Colour reconnections in HERWIG++, Eur. Phys. J. C 72 (2012) 2225 [arXiv:1206.0041] [INSPIRE].ADSCrossRefGoogle Scholar
  109. [109]
    M.H. Seymour and A. Siodmok, Constraining MPI models using σ eff and recent Tevatron and LHC Underlying Event data, JHEP 10 (2013) 113 [arXiv:1307.5015] [INSPIRE].ADSCrossRefGoogle Scholar
  110. [110]
    M. Bahr, M. Myska, M.H. Seymour and A. Siodmok, Extracting σ effective from the CDF γ+3jets measurement, JHEP 03 (2013) 129 [arXiv:1302.4325] [INSPIRE].ADSCrossRefGoogle Scholar
  111. [111]
    S. Platzer and S. Gieseke, Dipole Showers and Automated NLO Matching in HERWIG++, Eur. Phys. J. C 72 (2012) 2187 [arXiv:1109.6256] [INSPIRE].ADSCrossRefGoogle Scholar
  112. [112]
    S. Catani, F. Krauss, R. Kuhn and B.R. Webber, QCD matrix elements + parton showers, JHEP 11 (2001) 063 [hep-ph/0109231] [INSPIRE].
  113. [113]
    W.T. Giele, D.A. Kosower and P.Z. Skands, Higher-Order Corrections to Timelike Jets, Phys. Rev. D 84 (2011) 054003 [arXiv:1102.2126] [INSPIRE].ADSGoogle Scholar
  114. [114]
    S. Catani, B.R. Webber and G. Marchesini, QCD coherent branching and semiinclusive processes at large x, Nucl. Phys. B 349 (1991) 635 [INSPIRE].ADSCrossRefGoogle Scholar
  115. [115]
    N. Fischer, S. Gieseke, S. Plätzer and P. Skands, Revisiting radiation patterns in e + e collisions, Eur. Phys. J. C 74 (2014) 2831 [arXiv:1402.3186] [INSPIRE].ADSCrossRefGoogle Scholar
  116. [116]
    L. Hartgring, E. Laenen and P. Skands, Antenna Showers with One-Loop Matrix Elements, JHEP 10 (2013) 127 [arXiv:1303.4974] [INSPIRE].ADSCrossRefGoogle Scholar
  117. [117]
    L. Lönnblad and S. Prestel, Merging Multi-leg NLO Matrix Elements with Parton Showers, JHEP 03 (2013) 166 [arXiv:1211.7278] [INSPIRE].ADSCrossRefGoogle Scholar
  118. [118]
    H.T. Li and P. Skands, A framework for second-order parton showers, Phys. Lett. B 771 (2017) 59 [arXiv:1611.00013] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  119. [119]
    C. Bierlich, G. Gustafson, L. Lönnblad and A. Tarasov, Effects of Overlapping Strings in pp Collisions, JHEP 03 (2015) 148 [arXiv:1412.6259] [INSPIRE].CrossRefGoogle Scholar
  120. [120]
    S. Frixione and B.R. Webber, Matching NLO QCD computations and parton shower simulations, JHEP 06 (2002) 029 [hep-ph/0204244] [INSPIRE].
  121. [121]
    L.M. Dery, B. Nachman, F. Rubbo and A. Schwartzman, Weakly Supervised Classification in High Energy Physics, JHEP 05 (2017) 145 [arXiv:1702.00414] [INSPIRE].Google Scholar
  122. [122]
    ZEUS collaboration, S. Chekanov et al., Substructure dependence of jet cross sections at HERA and determination of α s, Nucl. Phys. B 700 (2004) 3 [hep-ex/0405065] [INSPIRE].
  123. [123]
    D. d’Enterria et al., Parton Radiation and Fragmentation from LHC to FCC-ee, arXiv:1702.01329.
  124. [124]
    OPAL collaboration, G. Alexander et al., A Direct observation of quark-gluon jet differences at LEP, Phys. Lett. B 265 (1991) 462 [INSPIRE].
  125. [125]
    OPAL collaboration, P.D. Acton et al., A Study of differences between quark and gluon jets using vertex tagging of quark jets, Z. Phys. C 58 (1993) 387 [INSPIRE].
  126. [126]
    ALEPH collaboration, D. Buskulic et al., Quark and gluon jet properties in symmetric three jet events, Phys. Lett. B 384 (1996) 353 [INSPIRE].
  127. [127]
    DELPHI collaboration, P. Abreu et al., Energy dependence of the differences between the quark and gluon jet fragmentation, Z. Phys. C 70 (1996) 179 [INSPIRE].
  128. [128]
    OPAL collaboration, R. Akers et al., A model independent measurement of quark and gluon jet properties and differences, Z. Phys. C 68 (1995) 179 [INSPIRE].
  129. [129]
    DELPHI collaboration, P. Abreu et al., Investigation of the splitting of quark and gluon jets, Eur. Phys. J. C 4 (1998) 1 [INSPIRE].
  130. [130]
    DELPHI collaboration, P. Abreu et al., Measurement of the gluon fragmentation function and a comparison of the scaling violation in gluon and quark jets, Eur. Phys. J. C 13 (2000) 573 [INSPIRE].
  131. [131]
    OPAL collaboration, G. Alexander et al., Test of QCD analytic predictions for the multiplicity ratio between gluon and quark jets, Phys. Lett. B 388 (1996) 659 [INSPIRE].
  132. [132]
    OPAL collaboration, K. Ackerstaff et al., Multiplicity distributions of gluon and quark jets and tests of QCD analytic predictions, Eur. Phys. J. C 1 (1998) 479 [hep-ex/9708029] [INSPIRE].
  133. [133]
    OPAL collaboration, G. Abbiendi et al., Experimental properties of gluon and quark jets from a point source, Eur. Phys. J. C 11 (1999) 217 [hep-ex/9903027] [INSPIRE].
  134. [134]
    OPAL collaboration, G. Abbiendi et al., Tests of models of color reconnection and a search for glueballs using gluon jets with a rapidity gap, Eur. Phys. J. C 35 (2004) 293 [hep-ex/0306021] [INSPIRE].
  135. [135]
    A. Karneyeu, L. Mijovic, S. Prestel and P.Z. Skands, MCPLOTS: a particle physics resource based on volunteer computing, Eur. Phys. J. C 74 (2014) 2714 [arXiv:1306.3436] [INSPIRE].ADSCrossRefGoogle Scholar
  136. [136]
    P. Ilten, N.L. Rodd, J. Thaler and M. Williams, Disentangling Heavy Flavor at Colliders, arXiv:1702.02947 [INSPIRE].
  137. [137]
    J. Bellm, G. Nail, S. Plätzer, P. Schichtel and A. Siódmok, Parton Shower Uncertainties with HERWIG 7: Benchmarks at Leading Order, Eur. Phys. J. C 76 (2016) 665 [arXiv:1605.01338] [INSPIRE].ADSCrossRefGoogle Scholar
  138. [138]
    J. Bellm, S. Plätzer, P. Richardson, A. Siódmok and S. Webster, Reweighting Parton Showers, Phys. Rev. D 94 (2016) 034028 [arXiv:1605.08256] [INSPIRE].ADSGoogle Scholar
  139. [139]
    S. Mrenna and P. Skands, Automated Parton-Shower Variations in PYTHIA 8, Phys. Rev. D 94 (2016) 074005 [arXiv:1605.08352] [INSPIRE].ADSGoogle Scholar
  140. [140]
    E. Bothmann, M. Schönherr and S. Schumann, Reweighting QCD matrix-element and parton-shower calculations, Eur. Phys. J. C 76 (2016) 590 [arXiv:1606.08753] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2017

Authors and Affiliations

  • Philippe Gras
    • 1
  • Stefan Höche
    • 2
  • Deepak Kar
    • 3
  • Andrew Larkoski
    • 4
  • Leif Lönnblad
    • 5
  • Simon Plätzer
    • 6
    • 7
  • Andrzej Siódmok
    • 8
    • 9
  • Peter Skands
    • 10
  • Gregory Soyez
    • 11
  • Jesse Thaler
    • 12
  1. 1.IRFU, CEA, Université Paris-SaclayGif-sur-YvetteFrance
  2. 2.SLAC National Accelerator LaboratoryMenlo ParkU.S.A.
  3. 3.School of PhysicsUniversity of the WitwatersrandJohannesburgSouth Africa
  4. 4.Physics DepartmentReed CollegePortlandU.S.A.
  5. 5.Department of Astronomy and Theoretical PhysicsLund UniversityLundSweden
  6. 6.Institute for Particle Physics PhenomenologyUniversity of DurhamDurhamU.K.
  7. 7.Particle Physics Group, School of Physics and AstronomyUniversity of ManchesterManchesterU.K.
  8. 8.CERN, TH DepartmentGenevaSwitzerland
  9. 9.Institute of Nuclear PhysicsPolish Academy of SciencesKrakówPoland
  10. 10.School of Physics and AstronomyMonash UniversityClaytonAustralia
  11. 11.IPhT, CEA Saclay, CNRS UMR 3681Gif-sur-YvetteFrance
  12. 12.Center for Theoretical PhysicsMassachusetts Institute of TechnologyCambridgeU.S.A.

Personalised recommendations